1
|
Prasad AN, Woolsey C, Borisevich V, Agans KN, Deer DJ, Geisbert JB, Harrison MB, Dobias NS, Fenton KA, Cross RW, Geisbert TW. Remdesivir, mAb114, REGN-EB3, and ZMapp partially rescue nonhuman primates infected with a low passage Kikwit variant of Ebola virus. Nat Commun 2025; 16:3824. [PMID: 40268932 PMCID: PMC12019533 DOI: 10.1038/s41467-025-59168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025] Open
Abstract
In 2018, a clinical trial of four investigational therapies for Ebola virus disease (EVD), known as the PALM trial, was conducted in the Democratic Republic of Congo. All patients received either the antiviral remdesivir (RDV) or a monoclonal antibody product: ZMapp, mAb114 (Ebanga), or REGN-EB3 (Inmazeb). The study concluded that both mAb114 and REGN-EB3 were superior to ZMapp and RDV in reducing mortality from EVD. However, the data suggested that some patients in the RDV and ZMapp groups might have been sicker at the time of treatment initiation. Here, we assessed the efficacy of each of these therapies in a uniformly lethal rhesus monkey model of EVD when treatment was initiated 5 days after Ebola exposure. Treatment with RDV, mAb114, REGN-EB3, and ZMapp each resulted in similar survival (approximately 40%). Survival was associated with circulating viral load at treatment initiation. A trend of more escape mutants in the GP1 and GP2 domains was observed for the mAb114 group. Our data show similar suboptimal efficacy of individual therapeutics in the uniformly lethal NHP model of EVD, supporting further clinical investigation of therapeutic combinations to maximize the overall therapeutic effect and improve patient outcomes, particularly for the treatment of advanced stage EVD.
Collapse
MESH Headings
- Animals
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/virology
- Hemorrhagic Fever, Ebola/mortality
- Ebolavirus/drug effects
- Ebolavirus/genetics
- Ebolavirus/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/therapeutic use
- Adenosine Monophosphate/pharmacology
- Macaca mulatta
- Alanine/analogs & derivatives
- Alanine/therapeutic use
- Alanine/pharmacology
- Antiviral Agents/therapeutic use
- Antiviral Agents/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Disease Models, Animal
- Humans
- Female
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Male
Collapse
Affiliation(s)
- Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Zumbrun EE, Garvey CB, Wells JB, Lynn GC, Van Tongeren SA, Steffens JT, Wetzel KS, Wetzel DL, Esham HL, Garza NL, Lee ED, Scruggs JL, Rossi FD, Brown ES, Weidner JM, Gomba LM, O’Brien KA, Jay AN, Zeng X, Akers KS, Kallgren PA, Englund E, Meinig JM, Kugelman JR, Moore JL, Bloomfield HA, Norris SL, Bryan T, Scheuerell CH, Walters J, Mollova N, Blair C, Babusis D, Cihlar T, Porter DP, Singh B, Hedskog C, Bavari S, Warren TK, Bannister R. A Randomized, Blinded, Vehicle-Controlled Dose-Ranging Study to Evaluate and Characterize Remdesivir Efficacy Against Ebola Virus in Rhesus Macaques. Viruses 2024; 16:1934. [PMID: 39772240 PMCID: PMC11680158 DOI: 10.3390/v16121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure. Thirty rhesus macaques underwent surgical implantation of telemetry devices for the fine-scale monitoring of body temperature and activity, as well as central venous catheters, to enable treatment administration and blood collection. Treatment, consisting of a loading dose of RDV followed by once-daily maintenance doses for 11 days, was initiated 4 days after virus exposure when all animals were exhibiting disease signs consistent with incipient EBOV disease as well as quantifiable levels of EBOV RNA in plasma. In the RDV treatment groups receiving loading/maintenance doses of 5/2.5 mg/kg, 10/5 mg/kg, and 20/10 mg/kg, a total of 6 of 8 (75%), 7 of 8 (87.5%), and 5 of 7 (71.4%) animals survived, respectively. In the vehicle control group, one of seven animals (14.3%) survived. The improved survival rate compared to the control group was statistically significant only for the 10/5 mg/kg RDV treatment group. This treatment regimen also resulted in a significantly lower systemic viral load compared to the vehicle control after a single RDV treatment. All three RDV regimens produced a significantly lower systemic viral load after two treatments. For most animals, RDV treatment, regardless of dose, resulted in the amelioration of many of the clinical-pathological changes associated with EBOV disease in this model.
Collapse
Affiliation(s)
- Elizabeth E. Zumbrun
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Carly B. Garvey
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Jay B. Wells
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Ginger C. Lynn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Sean A. Van Tongeren
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Jesse T. Steffens
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Kelly S. Wetzel
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Darrell L. Wetzel
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Heather L. Esham
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Nicole L. Garza
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Eric D. Lee
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Jennifer L. Scruggs
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Franco D. Rossi
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Elizabeth S. Brown
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Jessica M. Weidner
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Laura M. Gomba
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Kristan A. O’Brien
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Alexandra N. Jay
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Kristen S. Akers
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Paul A. Kallgren
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Ethan Englund
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - J. Matthew Meinig
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Jeffrey R. Kugelman
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Joshua L. Moore
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Holly A. Bloomfield
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Sarah L. Norris
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Tameka Bryan
- PharPoint Research, Inc., Wilmington, NC 28401, USA;
| | | | - Jesse Walters
- Labcorp Early Development Laboratories, Madison, WI 53704, USA; (C.H.S.); (J.W.)
| | - Nevena Mollova
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| | - Christiana Blair
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| | - Darius Babusis
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| | - Danielle P. Porter
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| | - Bali Singh
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| | - Charlotte Hedskog
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
| | - Travis K. Warren
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.A.V.T.); (J.T.S.); (K.S.W.); (D.L.W.); (H.L.E.); (E.D.L.); (J.L.S.); (F.D.R.); (E.S.B.); (J.M.W.); (L.M.G.); (K.A.O.); (A.N.J.); (X.Z.); (K.S.A.); (P.A.K.); (E.E.); (J.M.M.); (J.R.K.); (J.L.M.); (H.A.B.); (S.L.N.); (S.B.); (T.K.W.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Roy Bannister
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (N.M.); (C.B.); (D.B.); (T.C.); (D.P.P.); (B.S.); (C.H.); (R.B.)
| |
Collapse
|
3
|
Cohen CA, Zumbrun EE, Writer JV, Bonagofski LG, Shoemaker CJ, Zeng X, Blancett CD, Douglas CE, Delp KL, Taylor-Howell CL, Carey BD, Ravulapalli S, Raymond JL, Dye JM, Herbert AS. A Small-Particle Aerosol Model of Ebolavirus Zaire Infection in Ferrets. Viruses 2024; 16:1806. [PMID: 39772117 PMCID: PMC11680438 DOI: 10.3390/v16121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model. EBOV infection of ferrets by either route resulted in uniform lethality in 5-6.5 days post infection (dpi) in a dose-dependent manner, with IM-infected ferrets succumbing significantly earlier than AE-infected ferrets. EBOV disease progression differed between AE and IM routes, with significant viremia and presence of virus in target organs occurring earlier in the AE model. In contrast, significant fever, clinical signs of disease, liver pathology, and systemic inflammation occurred earlier in the IM EBOV model. Hepatocellular damage and splenic pathology were noted in both models, while pronounced lung pathology and renal impairment were exclusive to the AE and IM models, respectively. These results demonstrate that small-particle AE and IM ferret EBOV models share numerous common features with NHP and human EBOV infection by these routes and will therefore be useful for the development of vaccine and therapeutic countermeasures.
Collapse
Affiliation(s)
- Courtney A. Cohen
- Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.A.C.); (E.E.Z.); (J.M.D.)
| | - Elizabeth E. Zumbrun
- Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.A.C.); (E.E.Z.); (J.M.D.)
| | - James V. Writer
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Luke G. Bonagofski
- Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.A.C.); (E.E.Z.); (J.M.D.)
| | - Charles J. Shoemaker
- Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.J.S.); (C.D.B.); (K.L.D.); (C.L.T.-H.); (B.D.C.); (S.R.)
| | - Xiankun Zeng
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (X.Z.); (J.L.R.)
| | - Candace D. Blancett
- Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.J.S.); (C.D.B.); (K.L.D.); (C.L.T.-H.); (B.D.C.); (S.R.)
| | - Christina E. Douglas
- Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.J.S.); (C.D.B.); (K.L.D.); (C.L.T.-H.); (B.D.C.); (S.R.)
| | - Korey L. Delp
- Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.J.S.); (C.D.B.); (K.L.D.); (C.L.T.-H.); (B.D.C.); (S.R.)
| | - Cheryl L. Taylor-Howell
- Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.J.S.); (C.D.B.); (K.L.D.); (C.L.T.-H.); (B.D.C.); (S.R.)
| | - Brian D. Carey
- Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.J.S.); (C.D.B.); (K.L.D.); (C.L.T.-H.); (B.D.C.); (S.R.)
| | - Suma Ravulapalli
- Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.J.S.); (C.D.B.); (K.L.D.); (C.L.T.-H.); (B.D.C.); (S.R.)
| | - Jo Lynne Raymond
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (X.Z.); (J.L.R.)
| | - John M. Dye
- Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.A.C.); (E.E.Z.); (J.M.D.)
| | - Andrew S. Herbert
- Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.A.C.); (E.E.Z.); (J.M.D.)
| |
Collapse
|
4
|
de La Vega MA, XIII A, Massey CS, Spengler JR, Kobinger GP, Woolsey C. An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses. Expert Opin Drug Discov 2024; 19:1185-1211. [PMID: 39090822 PMCID: PMC11466704 DOI: 10.1080/17460441.2024.2386100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Collapse
Affiliation(s)
- Marc-Antoine de La Vega
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Christopher S. Massey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch and Infectious Diseases
Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for
Disease Control and Prevention, Atlanta, GA
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Expanded profiling of Remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Sci Rep 2023; 13:3131. [PMID: 36823196 PMCID: PMC9950143 DOI: 10.1038/s41598-023-29517-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.
Collapse
|
7
|
A Review on Zoonotic Pathogens Associated with Non-Human Primates: Understanding the Potential Threats to Humans. Microorganisms 2023; 11:microorganisms11020246. [PMID: 36838210 PMCID: PMC9964884 DOI: 10.3390/microorganisms11020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Non-human primates (NHP) share a close relationship with humans due to a genetic homology of 75-98.5%. NHP and humans have highly similar tissue structures, immunity, physiology, and metabolism and thus often can act as hosts to the same pathogens. Agriculture, meat consumption habits, tourism development, religious beliefs, and biological research have led to more extensive and frequent contact between NHPs and humans. Deadly viruses, such as rabies virus, herpes B virus, Marburg virus, Ebola virus, human immunodeficiency virus, and monkeypox virus can be transferred from NHP to humans. Similarly, herpes simplex virus, influenza virus, and yellow fever virus can be transmitted to NHP from humans. Infectious pathogens, including viruses, bacteria, and parasites, can affect the health of both primates and humans. A vast number of NHP-carrying pathogens exhibit a risk of transmission to humans. Therefore, zoonotic infectious diseases should be evaluated in future research. This article reviews the research evidence, diagnostic methods, prevention, and treatment measures that may be useful in limiting the spread of several common viral pathogens via NHP and providing ideas for preventing zoonotic diseases with epidemic potential.
Collapse
|
8
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
9
|
Ogunsakin RE, Ebenezer O, Jordaan MA, Shapi M, Ginindza TG. Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148845. [PMID: 35886696 PMCID: PMC9318242 DOI: 10.3390/ijerph19148845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023]
Abstract
In response to global efforts to control and exterminate infectious diseases, this study aims to provide insight into the productivity of remdesivir research and highlight future directions. To achieve this, there is a need to summarize and curate evidence from the literature. As a result, this study carried out comprehensive scientific research to detect trends in published articles related to remdesivir using a bibliometric analysis. Keywords associated with remdesivir were used to access pertinent published articles using the Scopus database. A total of 5321 research documents were retrieved, primarily as novel research articles (n = 2440; 46%). The number of publications increased exponentially from 2020 up to the present. The papers published by the top 12 institutions focusing on remdesivir accounted for 25.69% of the overall number of articles. The USA ranked as the most productive country, with 906 documents (37.1%), equivalent to one-third of the global publications in this field. The most productive institution was Icahn School of Medicine, Mount Sinai, in the USA (103 publications). The New England Journal of Medicine was the most cited, with an h-index of 13. The publication of research on remdesivir has gained momentum in the past year. The importance of remdesivir suggests that it needs continued research to help global health organizations detect areas requiring instant action to implement suitable measures. Furthermore, this study offers evolving hotspots and valuable insights into the scientific advances in this field and provides scaling-up analysis and evidence diffusion on remdesivir.
Collapse
Affiliation(s)
- Ropo E. Ogunsakin
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Correspondence:
| | - Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Maryam A. Jordaan
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Themba G. Ginindza
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Cancer & Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
10
|
Hickman MR, Saunders DL, Bigger CA, Kane CD, Iversen PL. The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections. PLoS Negl Trop Dis 2022; 16:e0010220. [PMID: 35259154 PMCID: PMC8903284 DOI: 10.1371/journal.pntd.0010220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) began development of a broad-spectrum antiviral countermeasure against deliberate use of high-consequence viral hemorrhagic fevers (VHFs) in 2016. The effort featured comprehensive preclinical research, including laboratory testing and rapid advancement of lead molecules into nonhuman primate (NHP) models of Ebola virus disease (EVD). Remdesivir (GS-5734, Veklury, Gilead Sciences) was the first small molecule therapeutic to successfully emerge from this effort. Remdesivir is an inhibitor of RNA-dependent RNA polymerase, a viral enzyme that is essential for viral replication. Its robust potency and broad-spectrum antiviral activity against certain RNA viruses including Ebola virus and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) led to its clinical evaluation in randomized, controlled trials (RCTs) in human patients during the 2018 EVD outbreak in the Democratic Republic of the Congo (DRC) and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic today. Remdesivir was recently approved by the US Food and Drug Administration (FDA) for the treatment of COVID-19 requiring hospitalization. Substantial gaps remain in improving the outcomes of acute viral infections for patients afflicted with both EVD and COVID-19, including how to increase therapeutic breadth and strategies for the prevention and treatment of severe disease. Combination therapy that joins therapeutics with complimentary mechanisms of action appear promising, both preclinically and in RCTs. Importantly, significant programmatic challenges endure pertaining to a clear drug and biological product development pathway for therapeutics targeting biodefense and emerging pathogens when human efficacy studies are not ethical or feasible. For example, remdesivir's clinical development was facilitated by outbreaks of Ebola and SARS-CoV-2; as such, the development pathway employed for remdesivir is likely to be the exception rather than the rule. The current regulatory licensure pathway for therapeutics targeting rare, weaponizable VHF agents is likely to require use of FDA's established Animal Rule (21 CFR 314.600-650 for drugs; 21 CFR 601.90-95 for biologics). The FDA may grant marketing approval based on adequate and well-controlled animal efficacy studies when the results of those studies establish that the drug is safe and likely to produce clinical benefit in humans. In practical terms, this is anticipated to include a series of rigorous, well-documented, animal challenge studies, to include aerosol challenge, combined with human safety data. While small clinical studies against naturally occurring, high-consequence pathogens are typically performed where possible, approval for the therapeutics currently under development against biodefense pathogens will likely require the Animal Rule pathway utilizing studies in NHPs. We review the development of remdesivir as illustrative of the effort that will be needed to field future therapeutics against highly lethal, infectious agents.
Collapse
Affiliation(s)
- Mark R. Hickman
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, Maryland, United States of America
| | - David L. Saunders
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Catherine A. Bigger
- Logistics Management International Inc, Tysons Corner, Virginia, United States of America
| | | | | |
Collapse
|
11
|
Cihlar T, Mackman RL. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir Ther 2022; 27:13596535221082773. [DOI: 10.1177/13596535221082773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
If a planned path reaches a dead-end, one can simply stop. Or one can turn around, walk back to the last intersection and take another path, or one can consider taking few paths in parallel. The last scenario is reflective of the journey of remdesivir, the first antiviral for the treatment of COVID-19, that was approved by FDA less than 10 months after the isolation of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. As of January 2022, 10 million COVID-19 patients have been treated with remdesivir worldwide, but the journey of this molecule started more than a decade earlier with the search for a cure of hepatitis C virus. The development path of remdesivir before the emergence of COVID-19 represents a valuable example of a preemptive pandemic preparedness, but the pursuit of this path would not have been possible without sustaining support of John C. Martin, whom we will sorely miss for his piercing vision, uncompromising leadership, and genuine compassion for patients suffering around the world.
Collapse
|
12
|
Liu J, Trefry JC, Babka AM, Schellhase CW, Coffin KM, Williams JA, Raymond JLW, Facemire PR, Chance TB, Davis NM, Scruggs JL, Rossi FD, Haddow AD, Zelko JM, Bixler SL, Crozier I, Iversen PL, Pitt ML, Kuhn JH, Palacios G, Zeng X. Ebola virus persistence and disease recrudescence in the brains of antibody-treated nonhuman primate survivors. Sci Transl Med 2022; 14:eabi5229. [PMID: 35138912 DOI: 10.1126/scitranslmed.abi5229] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Effective therapeutics have been developed against acute Ebola virus disease (EVD) in both humans and experimentally infected nonhuman primates. However, the risk of viral persistence and associated disease recrudescence in survivors receiving these therapeutics remains unclear. In contrast to rhesus macaques that survived Ebola virus (EBOV) exposure in the absence of treatment, we discovered that EBOV, despite being cleared from all other organs, persisted in the brain ventricular system of rhesus macaque survivors that had received monoclonal antibody (mAb) treatment. In mAb-treated macaque survivors, EBOV persisted in macrophages infiltrating the brain ventricular system, including the choroid plexuses. This macrophage infiltration was accompanied by severe tissue damage, including ventriculitis, choroid plexitis, and meningoencephalitis. Specifically, choroid plexus endothelium-derived EBOV infection led to viral persistence in the macaque brain ventricular system. This resulted in apoptosis of ependymal cells, which constitute the blood-cerebrospinal fluid barrier of the choroid plexuses. Fatal brain-confined recrudescence of EBOV infection manifested as severe inflammation, local pathology, and widespread infection of the ventricular system and adjacent neuropil in some of the mAb-treated macaque survivors. This study highlights organ-specific EBOV persistence and fatal recrudescent disease in rhesus macaque survivors after therapeutic treatment and has implications for the long-term follow-up of human survivors of EVD.
Collapse
Affiliation(s)
- Jun Liu
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - John C Trefry
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - April M Babka
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Christopher W Schellhase
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Kayla M Coffin
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Janice A Williams
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Jo Lynne W Raymond
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Paul R Facemire
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Taylor B Chance
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Neil M Davis
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Jennifer L Scruggs
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Franco D Rossi
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Andrew D Haddow
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Justine M Zelko
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Sandra L Bixler
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Patrick L Iversen
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Margaret L Pitt
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Downs I, Johnson JC, Rossi F, Dyer D, Saunders DL, Twenhafel NA, Esham HL, Pratt WD, Trefry J, Zumbrun E, Facemire PR, Johnston SC, Tompkins EL, Jansen NK, Honko A, Cardile AP. Natural History of Aerosol-Induced Ebola Virus Disease in Rhesus Macaques. Viruses 2021; 13:v13112297. [PMID: 34835103 PMCID: PMC8619410 DOI: 10.3390/v13112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ebola virus disease (EVD) is a serious global health concern because case fatality rates are approximately 50% due to recent widespread outbreaks in Africa. Well-defined nonhuman primate (NHP) models for different routes of Ebola virus exposure are needed to test the efficacy of candidate countermeasures. In this natural history study, four rhesus macaques were challenged via aerosol with a target titer of 1000 plaque-forming units per milliliter of Ebola virus. The course of disease was split into the following stages for descriptive purposes: subclinical, clinical, and decompensated. During the subclinical stage, high levels of venous partial pressure of carbon dioxide led to respiratory acidemia in three of four of the NHPs, and all developed lymphopenia. During the clinical stage, all animals had fever, viremia, and respiratory alkalosis. The decompensatory stage involved coagulopathy, cytokine storm, and liver and renal injury. These events were followed by hypotension, elevated lactate, metabolic acidemia, shock and mortality similar to historic intramuscular challenge studies. Viral loads in the lungs of aerosol-exposed animals were not distinctly different compared to previous intramuscularly challenged studies. Differences in the aerosol model, compared to intramuscular model, include an extended subclinical stage, shortened clinical stage, and general decompensated stage. Therefore, the shortened timeframe for clinical detection of the aerosol-induced disease can impair timely therapeutic administration. In summary, this nonhuman primate model of aerosol-induced EVD characterizes early disease markers and additional details to enable countermeasure development.
Collapse
Affiliation(s)
- Isaac Downs
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Correspondence: ; Tel.: +1-301-619-0369
| | - Joshua C. Johnson
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Moderna, Inc., Cambridge, MA 02139, USA
| | - Franco Rossi
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - David Dyer
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - David L. Saunders
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Nancy A. Twenhafel
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Heather L. Esham
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - William D. Pratt
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - John Trefry
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Elizabeth Zumbrun
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Paul R. Facemire
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Sara C. Johnston
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Erin L. Tompkins
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Nathan K. Jansen
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Anna Honko
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Investigator at National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony P. Cardile
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| |
Collapse
|