1
|
Wang L, Yang H, Wang C, Wang M, Huang J, Nyunt T, Osorio C, Sun SY, Pacifici M, Lefebvre V, Moore DC, Wang S, Yang W. SHP2 ablation mitigates osteoarthritic cartilage degeneration by promoting chondrocyte anabolism through SOX9. FASEB J 2024; 38:e70013. [PMID: 39225365 PMCID: PMC11404350 DOI: 10.1096/fj.202400642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Huiliang Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingliang Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahui Huang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Thedoe Nyunt
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Camilo Osorio
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Véronique Lefebvre
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Moore
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Yin H, Yue H, Wang M, Zhang T, Zhao YT, Liu H, Wang J, Zheng H, Xue C. Preparation of Novel Sea Cucumber Intestinal Peptides to Promote Tibial Fracture Healing in Mice by Inducing Differentiation of Hypertrophic Chondrocytes to the Osteoblast Lineage. Mol Nutr Food Res 2024; 68:e2300344. [PMID: 38100188 DOI: 10.1002/mnfr.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/18/2023] [Indexed: 02/01/2024]
Abstract
SCOPE Hypertrophic chondrocytes have a decisive regulatory role in the process of fracture healing, and the fate of hypertrophic chondrocytes is not only apoptosis. However, the mechanism of sea cucumber (Stichopus japonicus) intestinal peptide (SCIP) on fracture promotion is still unclear. This study aims to investigate the effect of sea cucumber intestinal peptide on the differentiation fate of hypertrophic chondrocytes in a mouse tibial fracture model. METHODS AND RESULTS Mice are subjected to open fractures of the right tibia to establish a tibial fracture model. The results exhibit that the SCIP intervention significantly promotes the mineralization of cartilage callus, decreases the expression of the hypertrophic chondrocyte marker Col X, and increases the expression of the osteoblast marker Col I. Mechanically, SCIP promotes tibial fracture healing by promoting histone acetylation and inhibiting histone methylation, thereby upregulating pluripotent transcription factors induced the differentiation of hypertrophic chondrocytes to the osteoblast lineage in a manner distinct from classical endochondral ossification. CONCLUSION This study is the first to report that SCIP can promote tibial fracture healing in mice by inducing the differentiation of hypertrophic chondrocytes to the osteoblast lineage. SCIP may be considered raw material for developing nutraceuticals to promote fracture healing.
Collapse
Affiliation(s)
- Haowen Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
| | - Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Meng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Tianqi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Hongying Liu
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
- Qingdao Langyatai Group Co., Ltd, Qingdao, China
- Shandong Chongzhi Youpin Pet Food Co., Ltd., Weifang, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Hongwei Zheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
| |
Collapse
|
3
|
Han Y, Yang H, Hua Z, Nie S, Xu S, Zhou C, Chen F, Li M, Yu Q, Sun Y, Wei Y, Wang X. Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune Dysfunctions. Cells 2023; 12:cells12070972. [PMID: 37048045 PMCID: PMC10093245 DOI: 10.3390/cells12070972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Ankylosing spondylitis (AS) is clinically characterized by bone fusion that is induced by the pathological formation of extra bone. Unfortunately, the fundamental mechanism and related therapies remain unclear. The loss of SHP-2 (encoded by Ptpn11) in CD4-Cre;Ptpn11f/f mice resulted in the induction of AS-like pathological characteristics, including spontaneous cartilage and bone lesions, kyphosis, and arthritis. Hence, this mouse was utilized as an AS model in this study. As one of the basic physical fields, the magnetic field (MF) has been proven to be an effective treatment method for articular cartilage degeneration. In this study, the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on an AS-like mouse model were investigated. The RMF treatment (2 h/d, 0.2 T, 4 Hz) was performed on AS mice from two months after birth until the day before sampling. The murine specimens were subjected to transcriptomics, immunomics, and metabolomics analyses, combined with molecular and pathological experiments. The results demonstrated that the mitigation of inflammatory deterioration resulted in an increase in functional osteogenesis and a decrease in dysfunctional osteolysis due to the maintenance of bone homeostasis via the RANKL/RANK/OPG signaling pathway. Additionally, by regulating the ratio of CD4+ and CD8+ T-cells, RMF treatment rebalanced the immune microenvironment in skeletal tissue. It has been observed that RMF interventions have the potential to alleviate AS, including by decreasing pathogenicity and preventing disease initiation. Consequently, RMF, as a moderately physical therapeutic strategy, could be considered to alleviate the degradation of cartilage and bone tissue in AS and as a potential option to halt the progression of AS.
Collapse
Affiliation(s)
- Yu Han
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Hua Yang
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhongke Hua
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Shenglan Nie
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Shuling Xu
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Cai Zhou
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Fengyi Chen
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Mengqing Li
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Qinyao Yu
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yunpeng Wei
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Xiaomei Wang
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|