1
|
Navarro León AI, Alonso-Hearn M, Muñoz M, Iglesias N, Badia-Bringué G, Iglesias T, Balseiro A, Casais R. Early Growth Response Factor 4 (EGR4) Expression in Gut Tissues and Regional Lymph Nodes of Cattle with Different Types of Paratuberculosis-Associated Lesions: Potential Role of EGR4 in Resilience to Paratuberculosis. Animals (Basel) 2025; 15:1012. [PMID: 40218405 PMCID: PMC11988129 DOI: 10.3390/ani15071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Summary-data-based Mendelian randomization (SMR) analysis identified a novel cis-expression quantitative loci (cis-eQTL) associated with the upregulation of the expression of the early growth response factor 4 (EGR4) gene in animals with paratuberculosis (PTB)-associated multifocal lesions, which has been suggested to be modulating the NF-kβ-induced proinflammatory immune response to Mycobacterium avium subsp. paratuberculosis (Map) infection. To confirm these findings and to study the role of EGR4 expression in PTB resilience, the number of EGR4-expressing cells were analysed in paraffin-fixed gut tissues and regional lymph nodes of naturally Map-infected Holstein Friesian cows with focal, multifocal (subclinical and clinical), and diffuse lesions (intermediate and multibacillary), and in controls without lesions by quantitative anti-EGR4 immunohistochemistry. Subclinical animals with multifocal lesions showed a significantly higher number of EGR4-positive cells and were sacrificed at a significantly older average age than the remaining groups (p < 0.001 in all cases). We hypothesize that EGR4 could be mitigating the negative impact of Map infection on host clinical status through its involvement in three molecular mechanisms that promote resilience: (i) limiting NF-kβ-mediated proinflammatory responses, (ii) controlling tissue damage, acting as a brake on T-cell proliferation and cytokine production, and (iii) favouring tissue repair through interaction with epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Alejandra Isabel Navarro León
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (A.I.N.L.); (M.M.)
| | - Marta Alonso-Hearn
- Animal Health Department, NEIKER, Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Alava, Spain; (M.A.-H.); (G.B.-B.)
| | - Marta Muñoz
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (A.I.N.L.); (M.M.)
| | - Natalia Iglesias
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (A.I.N.L.); (M.M.)
| | - Gerard Badia-Bringué
- Animal Health Department, NEIKER, Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Alava, Spain; (M.A.-H.); (G.B.-B.)
| | - Tania Iglesias
- Unidad de Consultoría Estadística, Servicios Científico-Técnicos, Universidad de Oviedo, Campus de Gijón, 33203 Gijón, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
- Instituto de Ganadería de Montaña (IGM, CSIC-ULE), 24346 León, Spain
| | - Rosa Casais
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (A.I.N.L.); (M.M.)
| |
Collapse
|
2
|
Fong A, Rochus CM, Shandilya UK, Muniz MMM, Sharma A, Schenkel FS, Karrow NA, Baes CF. The role of interleukin-10 receptor alpha (IL10Rα) in Mycobacterium avium subsp. paratuberculosis infection of a mammary epithelial cell line. BMC Genom Data 2024; 25:58. [PMID: 38867147 PMCID: PMC11167801 DOI: 10.1186/s12863-024-01234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Johne's disease is a chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease is highly contagious and MAP infection in dairy cattle can eventually lead to death. With no available treatment for Johne's disease, genetic selection and improvements in management practices could help reduce its prevalence. In a previous study, the gene coding interleukin-10 receptor subunit alpha (IL10Rα) was associated with Johne's disease in dairy cattle. Our objective was to determine how IL10Rα affects the pathogenesis of MAP by examining the effect of a live MAP challenge on a mammary epithelial cell line (MAC-T) that had IL10Rα knocked out using CRISPR/cas9. The wild type and the IL10Rα knockout MAC-T cell lines were exposed to live MAP bacteria for 72 h. Thereafter, mRNA was extracted from infected and uninfected cells. Differentially expressed genes were compared between the wild type and the IL10Rα knockout cell lines. Gene ontology was performed based on the differentially expressed genes to determine which biological pathways were involved. RESULTS Immune system processes pathways were targeted to determine the effect of IL10Rα on the response to MAP infection. There was a difference in immune response between the wild type and IL10Rα knockout MAC-T cell lines, and less difference in immune response between infected and not infected IL10Rα knockout MAC-T cells, indicating IL10Rα plays an important role in the progression of MAP infection. Additionally, these comparisons allowed us to identify other genes involved in inflammation-mediated chemokine and cytokine signalling, interleukin signalling and toll-like receptor pathways. CONCLUSIONS Identifying differentially expressed genes in wild type and ILR10α knockout MAC-T cells infected with live MAP bacteria provided further evidence that IL10Rα contributes to mounting an immune response to MAP infection and allowed us to identify additional potential candidate genes involved in this process. We found there was a complex immune response during MAP infection that is controlled by many genes.
Collapse
Affiliation(s)
- Aisha Fong
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Christina M Rochus
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Umesh K Shandilya
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Maria M M Muniz
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ankita Sharma
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Christine F Baes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3002, Switzerland.
| |
Collapse
|
3
|
Badia-Bringué G, Canive M, Vázquez P, Garrido JM, Fernández A, Juste RA, Jiménez JA, González-Recio O, Alonso-Hearn M. Genome-Wide Association Study Reveals Quantitative Trait Loci and Candidate Genes Associated with High Interferon-gamma Production in Holstein Cattle Naturally Infected with Mycobacterium Bovis. Int J Mol Sci 2024; 25:6165. [PMID: 38892353 PMCID: PMC11172856 DOI: 10.3390/ijms25116165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNɣ) and its use in bovine selective breeding programs have not been explored. In the current study, IFNɣ production was measured using a specific IFNɣ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNɣ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNɣ in response to Mb.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Joseba M. Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| |
Collapse
|
4
|
Badia-Bringué G, Lavín JL, Casais R, Alonso-Hearn M. Alternative splicing of pre-mRNA modulates the immune response in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Front Immunol 2024; 15:1354500. [PMID: 38495873 PMCID: PMC10940349 DOI: 10.3389/fimmu.2024.1354500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Little is known about the role of alternative splicing (AS) in regulating gene expression in Mycobacteria-infected individuals in distinct stages of infection. Pre-mRNA AS consists of the removal of introns and the assembly of exons contained in eukaryotic genes. AS events can influence transcript stability or structure with important physiological consequences. Using RNA-Seq data from peripheral blood (PB) and ileocecal valve (ICV) samples collected from Holstein cattle with focal and diffuse paratuberculosis (PTB)-associated histopathological lesions in gut tissues and without lesions (controls), we detected differential AS profiles between the infected and control groups. Four of the identified AS events were experimentally validated by reverse transcription-digital droplet PCR (RT-ddPCR). AS events in several genes correlated with changes in gene expression. In the ICV of animals with diffuse lesions, for instance, alternatively spliced genes correlated with changes in the expression of genes involved in endocytosis, antigen processing and presentation, complement activation, and several inflammatory and autoimmune diseases in humans. Taken together, our results identified common mechanisms of AS involvement in the pathogenesis of PTB and human diseases and shed light on novel diagnostic and therapeutic interventions to control these diseases.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - José Luis Lavín
- Department of Applied Mathematics, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
5
|
Badia-Bringué G, Canive M, Fernandez-Jimenez N, Lavín JL, Casais R, Blanco-Vázquez C, Vázquez P, Fernández A, Bilbao JR, Garrido JM, Juste RA, González-Recio O, Alonso-Hearn M. Summary-data based Mendelian randomization identifies gene expression regulatory polymorphisms associated with bovine paratuberculosis by modulation of the nuclear factor Kappa β (NF-κß)-mediated inflammatory response. BMC Genomics 2023; 24:605. [PMID: 37821814 PMCID: PMC10568764 DOI: 10.1186/s12864-023-09710-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified host genetic variants associated with paratuberculosis (PTB) susceptibility. Most of the GWAS-identified SNPs are in non-coding regions. Connecting these non-coding variants and downstream affected genes is a challenge and, up to date, only a few functional mutations or expression quantitative loci (cis-eQTLs) associated with PTB susceptibility have been identified. In the current study, the associations between imputed whole-genome sequence genotypes and whole RNA-Sequencing data from peripheral blood (PB) and ileocecal valve (ICV) samples of Spanish Holstein cows (N = 16) were analyzed with TensorQTL. This approach allowed the identification of 88 and 37 cis-eQTLs regulating the expression levels of 90 and 37 genes in PB and ICV samples, respectively (False discorey rate, FDR ≤ 0.05). Next, we applied summary-based data Mendelian randomization (SMR) to integrate the cis-eQTL dataset with GWAS data obtained from a cohort of 813 culled cattle that were classified according to the presence or absence of PTB-associated histopathological lesions in gut tissues. After multiple testing corrections (FDR ≤ 0.05), we identified two novel cis-eQTLs affecting the expression of the early growth response factor 4 (EGR4) and the bovine neuroblastoma breakpoint family member 6-like protein isoform 2 (MGC134040) that showed pleiotropic associations with the presence of multifocal and diffuse lesions in gut tissues; P = 0.002 and P = 0.017, respectively. While EGR4 acts as a brake on T-cell proliferation and cytokine production through interaction with the nuclear factor Kappa β (NF-κß), MGC134040 is a target gene of NF-κß. Our findings provide a better understanding of the genetic factors influencing PTB outcomes, confirm that the multifocal lesions are localized/confined lesions that have different underlying host genetics than the diffuse lesions, and highlight regulatory SNPs and regulated-gene targets to design future functional studies.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - Maria Canive
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia HRI, Leioa, Bizkaia, Spain
| | - José Luis Lavín
- Department of Applied Mathematics, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Deva, Asturias, Spain
| | - Cristina Blanco-Vázquez
- Center of Animal Biotechnology, SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Deva, Asturias, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Jose Ramón Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia HRI, Leioa, Bizkaia, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.
| |
Collapse
|
6
|
Badia-Bringué G, Canive M, Vázquez P, Garrido JM, Fernández A, Juste RA, Jiménez JA, González-Recio O, Alonso-Hearn M. Association between High Interferon-Gamma Production in Avian Tuberculin-Stimulated Blood from Mycobacterium avium subsp. paratuberculosis-Infected Cattle and Candidate Genes Implicated in Necroptosis. Microorganisms 2023; 11:1817. [PMID: 37512987 PMCID: PMC10384200 DOI: 10.3390/microorganisms11071817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanisms underlying host resistance to Mycobacterium avium subsp. paratuberculosis (MAP) infection are largely unknown. In the current study, we hypothesize that cows with an ability to produce higher levels of interferon-gamma (IFNɣ) might control MAP infection more successfully. To test this hypothesis, IFNɣ production was measured using a specific IFNɣ ELISA kit in avian purified protein derivative (aPPD)-stimulated blood samples collected from 152 Holstein cattle. DNA isolated from peripheral blood samples of the animals included in the study was genotyped with the EuroG Medium-Density Bead Chip, and the genotypes were imputed to whole-genome sequencing. A genome-wide association analysis (GWAS) revealed that high levels of IFNɣ in response to the aPPD were associated with a specific genetic profile (heritability = 0.64) and allowed the identification of 71 SNPs, 40 quantitative trait loci (QTL), and 104 candidate genes. A functional analysis using the 104 candidate genes revealed a significant enrichment of genes involved in the innate immune response and, more specifically, in necroptosis. Taken together, our results define a heritable and distinct immunogenetic profile associated with the production of high IFNɣ levels and with the capacity of the host to lyse MAP-infected macrophages by necroptosis.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
7
|
Verdugo C, Marquez D, Paredes E, Moroni M, Navarrete-Talloni MJ, Tomckowiack C, Salgado M. Association between the severity of histopathological lesions and Mycobacterium avium subspecies paratuberculosis (MAP) molecular diversity in cattle in southern Chile. Front Vet Sci 2023; 9:962241. [PMID: 36713883 PMCID: PMC9878319 DOI: 10.3389/fvets.2022.962241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
The objective was to evaluate the association between the severity of histopathological lesions caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection and the molecular diversity of this pathogen. Blood, ileum, and mesenteric lymph node samples were collected at slaughter, from 1,352 adult cattle [source population 1 (SP1)]. In addition, 42 dairy herds (n = 4,963 cows) were followed for 2 years, and samples from compatible paratuberculosis clinical cases [source population 2 (SP2)] were collected. MAP infection was confirmed using an ELISA test, liquid media culture, and PCR. Isolates were genotyped using five MIRU-VNTR markers. Tissues from confirmed samples were subjected to a histopathological examination. A histopathological severity score (HSS) system was developed and used to grade (0 to 5) the magnitude of lesions caused by MAP. In general, the HSS system assesses the number of foci and degree of macrophage infiltration, together with the presence of multinucleated giant cells (MGCs) and acid-fast bacilli (AFB), in addition to the fusion of the intestinal villi and hyperplasia of the crypts. Despite the large sampling effort, only 79 MAP isolates were successfully genotyped, where 19 different haplotypes were described. A mixed-effect Poisson regression model was used to assess the relationship between haplotypes and HSS values. The model was controlled by animal age, and the farm was used as a random effect. Haplotypes were grouped based on their relative frequency: the most frequent haplotype (group i, 49.4%), the second most frequent haplotype (group ii, 12.7%), and all other haplotypes (group iii, 37.9%). Model outputs indicated that group i had significantly higher HSS values than group iii. In addition, group i was also associated with higher optical density (OD) values of the ELISA test. These results support the existence of differences in pathogenicity between MAP haplotypes. However, results were based on a relatively small sample size; thus, these should be taken with caution. Despite this, study findings suggest that haplotypes would be associated with differences in disease progression, where the dominant haplotype tends to generate more severe lesions, which could be linked to a greater shed of MAP cells than non-dominant haplotypes, increasing their chances of transmission.
Collapse
Affiliation(s)
- Cristobal Verdugo
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile,Center for the Surveillance and Evolution of Infectious Diseases (CSEID), Universidad Austral de Chile, Valdivia, Chile,*Correspondence: Cristobal Verdugo ✉
| | - Diego Marquez
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile,Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Enrique Paredes
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Manuel Moroni
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Camilo Tomckowiack
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Miguel Salgado
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Badia-Bringué G, Canive M, Alonso-Hearn M. Control of Mycobacterium avium subsp. paratuberculosis load within infected bovine monocyte-derived macrophages is associated with host genetics. Front Immunol 2023; 14:1042638. [PMID: 36911672 PMCID: PMC9992791 DOI: 10.3389/fimmu.2023.1042638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The genetic loci influencing individual resistance to Mycobacterium avium subsp. paratuberculosis (MAP) infection are still largely unknown. In the current study, we searched for genetic loci associated with resistance to MAP infection by evaluating the performance of monocyte-derived macrophages (MDMs) isolated from the peripheral blood of 75 healthy Holsteins cows and infected ex vivo with MAP. Bacterial load (log colony-forming units, log CFUs) within MDMs was quantified at 2 h and 7 days p. i. using a BACTEC MGIT 960 instrument. In addition, the expression levels of some genes with important roles in the innate immune response including epiregulin (EREG), complement component C3 (C3), galectin-9 (Gal9), and nitric oxide (NO-) were measured in the supernatant of the infected cells. DNA from peripheral blood samples of the animals included in the study was isolated and genotyped with the EuroG MD bead Chip (44,779 single nucleotide-polymorphisms, SNPs). Linear mixed models were used to calculate the heritability (h2 ) estimates for each indicator of MDM performance, MAP load within MDMs and EREG, C3, Gal9, and NO-expression. After performing a genome-wide association study, the only phenotypes that showed SNPs with a significant association were the bacterial load within MDMs at 2 h (h2 = 0. 87) and 7 days (h2 = 0.83) p.i. A total of 6 SNPs, 5 candidate genes, and one microRNA on the Bos taurus chromosomes BTA2, BTA17, BTA18, and BTA21 were associated with MAP load at 2 h p.i. Overlap was seen in two SNPs associated with the log CFUs at 2 h and 7 d p.i. The identified SNPs had negative regression coefficients, and were, therefore, associated with a low bacterial load within MDMs. Some of the identified SNPs were located within QTLs previously associated with longevity, reproductive, and udder health traits. Some of the identified candidate genes; Oxysterol Binding Protein Like 6, Cysteine and Serine Rich Nuclear Protein 3, and the Coiled-Coil Domain Containing 92 regulate cellular cholesterol trafficking and efflux, apoptosis, and interferon production, respectively. Taken together, our results define a heritable and distinct immunogenetic profile in MAP-infected macrophages designed to limit bacterial load early after infection.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.,Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
9
|
Canive M, Badia-Bringué G, Alonso-Hearn M. The Upregulation of Cathepsin G Is Associated with Resistance to Bovine Paratuberculosis. Animals (Basel) 2022; 12:3038. [PMID: 36359162 PMCID: PMC9655680 DOI: 10.3390/ani12213038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/13/2023] Open
Abstract
An in silico genomic-transcriptomic combined approach allowed the identification of a polymorphism (cis-eQTL-rs41976219) in the Bos taurus genome associated with the CTSG mRNA expression in bovine blood samples, which suggests that individual genetic variation might modulate the CTSG transcriptional response. In the current study, a sandwich ELISA is used to measure the CTSG protein levels in supernatants of monocyte-derived macrophages (MDMs) isolated from cows with the AA (n = 5) and AC (n = 11) genotypes for the rs41976219 and infected ex vivo with MAP. Cows with the AC genotype have significantly higher CTSG protein levels (1.85 ng/mL) in the supernatants of enriched CD14+-MDMs after 2 h of infection when compared with infected CD14+-MDMs from cows with the AA genotype (1.68 ng/mL). Statistically significant differences in the intracellular MAP load at 7 d p.i. are observed between animals with the AA (2.16 log CFUs) and AC (1.44 log CFUs) genotypes. Finally, the association between the rs41976219 allelic variants and resistance to PTB is tested in a larger cattle population (n = 943) classified according to the presence (n = 442) or absence (n = 501) of PTB-associated lesions. The presence of the two minor alleles in the rs41976219 (CC) is more frequent among healthy cows than in cows with PTB-associated lesions in gut tissues (2.2% vs. 1.4%, OR = 0.61). In agreement with this, the CTSG levels in plasma samples of cows without lesions in gut tissues and with the CC (n = 8) genotype are significantly higher than in the plasmas of cows with the AA + AC (n = 36) genotypes.
Collapse
Affiliation(s)
- Maria Canive
- NEIKER-Basque Research and Technology Alliance (BRTA), 20850 Derio, Spain
| | - Gerard Badia-Bringué
- NEIKER-Basque Research and Technology Alliance (BRTA), 20850 Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Marta Alonso-Hearn
- NEIKER-Basque Research and Technology Alliance (BRTA), 20850 Derio, Spain
| |
Collapse
|
10
|
Wherry TLT, Dassanayake RP, Bannantine JP, Mooyottu S, Stabel JR. Vitamin D3 alters macrophage phenotype and endosomal trafficking markers in dairy cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Front Cell Infect Microbiol 2022; 12:1021657. [PMID: 36275033 PMCID: PMC9579537 DOI: 10.3389/fcimb.2022.1021657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Macrophages are important host defense cells in ruminant paratuberculosis (Johne’s Disease; JD), a chronic enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). Classical macrophage functions of pathogen trafficking, degradation, and antigen presentation are interrupted in mycobacterial infection. Immunologic stimulation by 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) enhances bovine macrophage function. The present study aimed to investigate the role of vitamin D3 on macrophage phenotype and endosomal trafficking of MAP in monocyte-derived macrophages (MDMs) cultured from JD-, JD+ subclinical, and JD+ clinically infected cattle. MDMs were pre-treated 100 ng/ml 25(OH)D3 or 4 ng/ml 1,25(OH)2D3 and incubated 24 hrs with MAP at 10:1 multiplicity of infection (MOI). In vitro MAP infection upregulated pro-inflammatory (M1) CD80 and downregulated resolution/repair (M2) CD163. Vitamin D3 generally decreased CD80 and increased CD163 expression. Furthermore, early endosomal marker Rab5 was upregulated 140× across all stages of paratuberculosis infection following in vitro MAP infection; however, Rab5 was reduced in MAP-activated MDMs from JD+ subclinical and JD+ clinical cows compared to healthy controls. Rab7 expression decreased in control and clinical cows following MDM infection with MAP. Both forms of vitamin D3 reduced Rab5 expression in infected MDMs from JD- control cows, while 1,25(OH)2D3 decreased Rab7 expression in JD- and JD+ subclinical animals regardless of MAP infection in vitro. Vitamin D3 promoted phagocytosis in MDMs from JD- and JD+ clinical cows treated with either vitamin D3 analog. Results from this study show exogenous vitamin D3 influences macrophage M1/M2 polarization and Rab GTPase expression within MDM culture.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- *Correspondence: Judith R. Stabel,
| |
Collapse
|
11
|
Alonso-Hearn M, Badia-Bringué G, Canive M. Genome-wide association studies for the identification of cattle susceptible and resilient to paratuberculosis. Front Vet Sci 2022; 9:935133. [PMID: 36172612 PMCID: PMC9510743 DOI: 10.3389/fvets.2022.935133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease or paratuberculosis (PTB), with important animal health and economic implications. There are no therapeutic strategies to control this disease, and vaccination with inactivated vaccines is limited in many countries because it can interfere with the intradermal test used for bovine tuberculosis detection. Thus, infected animals either get culled after a positive ELISA or fecal PCR result or die due to clinical disease. In this study, we review recent studies aimed to discover genetic markers which could help to identify and select cattle less susceptible and more resilient to PTB. In recent years, the genotyping and subsequent imputation to whole-genome sequence (WGS) has allowed the identification of single-nucleotide polymorphisms (SNPs), quantitative trait loci (QTL), and candidate genes in the Bos taurus genome associated with susceptibility to MAP infection. In most of these genome-wide association studies (GWAS), phenotypes were based on ante-mortem test results including serum ELISA, milk ELISA, and detection of MAP by fecal PCR and bacteriological culture. Cattle infected with MAP display lesions with distinct severity but the associations between host genetics and PTB-associated pathology had not been explored until very recently. On the contrary, the understanding of the mechanisms and genetic loci influencing pathogen resistance, and disease tolerance in asymptomatic individuals is currently very limited. The identification of long-time asymptomatic cattle that is able to resist the infection and/or tolerate the disease without having their health and milk production compromised is important for disease control and breeding purposes.
Collapse
|
12
|
Canive M, Badia-Bringué G, Vázquez P, Garrido JM, Juste RA, Fernandez A, González-Recio O, Alonso-Hearn M. A Genome-Wide Association Study for Tolerance to Paratuberculosis Identifies Candidate Genes Involved in DNA Packaging, DNA Damage Repair, Innate Immunity, and Pathogen Persistence. Front Immunol 2022; 13:820965. [PMID: 35464478 PMCID: PMC9019162 DOI: 10.3389/fimmu.2022.820965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Although the genetic susceptibility to diseases has been extensively studied, the genetic loci and the primary molecular and cellular mechanisms that control disease tolerance are still largely unknown. Bovine paratuberculosis (PTB) is an enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). PTB affects cattle worldwide and represents a major issue on animal health. In this study, the associations between host genetic and PTB tolerance were investigated using the genotypes from 277 Spanish Holstein cows with two distinct phenotypes: cases) infected animals with positive PCR and bacteriological culture results but without lesions in gut tissues (N= 24), and controls) animals with negative PCR and culture results but with PTB-associated lesions (N= 253). DNA from peripheral blood of the study population was genotyped with the Bovine EuroG MD Bead Chip, and the corresponding genotypes were imputed to whole-genome sequencing (WGS) data. A genome-wide association study was performed using the WGS data and the defined phenotypes in a case-control approach. A total of 142 single nucleotide polymorphisms (SNPs) were associated (false discovery rate ≤ 0.05, P values between 1.5 × 10-7 and 5.7 × 10-7) with tolerance (heritability= 0.55). The 40 SNPs with P-values < 5 × 10-7 defined 9 QTLs and 98 candidate genes located on BTA4, BTA9, BTA16, BTA25, and BTA26. Some of the QTLs identified in this study overlap with QTLs previously associated with PTB, bovine tuberculosis, mastitis, somatic cell score, bovine diarrhea virus persistent infection, tick resistance, and length of productive life. Two candidate genes with important roles in DNA damage response (ERCC4 and RMI2) were identified on BTA25. Functional analysis using the 98 candidate genes revealed a significant enrichment of the DNA packaging process (TNP2/PRMI1/PRM2/PRM3). In addition, the TNF-signaling (bta04668; TRAF5/CREB5/CASP7/CHUK) and the toxoplasmosis (bta05145; TGFβ2/CHUK/CIITA/SOCS1) pathways were significantly enriched. Interestingly, the nuclear Factor NF-κβ Inhibitor Kinase Alpha (CHUK), a key molecule in the regulation of the NF-κB pathway, was enriched in both pathways. Taken together, our results define a distinct immunogenetic profile in the PTB-tolerant animals designed to control bacterial growth, modulate inflammation, limit tissue damage and increase repair, thus reducing the severity of the disease.
Collapse
Affiliation(s)
- María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Almudena Fernandez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain.,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|