1
|
Lv B, Ma B, Li Y, Wu L, Huang M, He X, Xue J, Yang L. Biochar derived from feedstock with high lignin content leads to better soil improvement performance in red soils: from the perspective of soil microbial regulation and carbon stabilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:203. [PMID: 40343555 DOI: 10.1007/s10653-025-02522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Red soil in southern China has a significant potential for carbon sequestration enhancement. Therefore, this study aimed to explore more effective biochar options to enhance the soil microbial environment and investigate their effects on soil carbon cycling. Three types of biochar were prepared and analyzed: maize stover biochar (Maize-BC, low lignin content), cotton stover biochar (Cotton-BC, high lignin content), and sludge biochar (Sludge-BC, no lignin content). The structure of the soil microbial community and carbon dynamics were comprehensively analyzed. The three biochars increased soil inorganic carbon, stable organic carbon, microbial carbon, and dissolved organic carbon by 30.1%-75.5%, 37.6%-44.0%, 88.4%-248.1%, and 4.3%-73.9%, respectively. Maize-BC with lower lignin content exhibited higher abundance and diversity in soil microbial communities compared to other treatments. In contrast, the addition of Cotton-BC with higher lignin content resulted in a shift mainly in the phylum Actinobacteria and Proteobacteria. Overall, the soil changes induced by cotton stover were more favorable for promoting a shift in the microbial community structure toward a lower carbon cycle, enabling microorganisms to better regulate or control the soil carbon cycle. This study offers a promising approach for future research focused on enhancing soil fertility and reducing soil carbon emissions.
Collapse
Affiliation(s)
- Bowei Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bing Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch, 8440, New Zealand
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Gu G, Zeeshan Ul Haq M, Sun X, Zhou J, Liu Y, Yu J, Yang D, Yang H, Wu Y. Continuous cropping of Patchouli alters soil physiochemical properties and rhizosphere microecology revealed by metagenomic sequencing. Front Microbiol 2025; 15:1482904. [PMID: 39872816 PMCID: PMC11769982 DOI: 10.3389/fmicb.2024.1482904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Continuous cropping (CC) profoundly impacts soil ecosystems, including changes in soil factors and the structure and stability of microbial communities. These factors are interrelated and together affect soil health and plant growth. In this research, metagenomic sequencing was used to explore the effects of CC on physicochemical properties, enzyme activities, microbial community composition, and functional genes of the rhizosphere soil of patchouli. We found that this can lead to changes in various soil factors, including the continuous reduction of pH andNH 4 + -N and the unstable changes of many factors. In addition, S-PPO enzyme activity increased significantly with the cropping years, but S-NAG increased in the first 2 years and decreased in the third cropping year. Metagenomic sequencing results showed that CC significantly changed the diversity and composition of rhizosphere microbial communities. The relative abundance of Pseudomonas and Bacteroides decreased substantially from the phylum level. At the genus level, the number of microbial genera specific to the zero-year cropping (CK) and first (T1), second (T2), and third (T3) years decreased significantly, to 1798, 172, 42, and 44, respectively. The abundance of many functional genes changed, among which COG0823, a gene with the cellular process and signaling functions, significantly increased after CC. In addition,NH 4 + -N, S-CAT, S-LAP, and SOC were the main environmental factors affecting rhizosphere-dominant microbial communities at the phylum level, while pH, SOC, and AK were the key environmental factors affecting rhizosphere functional genes of Pogostemon cablin. In summary, this study showed the dynamic changes of soil factors and rhizosphere microorganisms during CC, providing a theoretical basis for understanding the formation mechanism and prevention of CC obstacles and contributing to the formulation of scientific soil management and fertilization strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
3
|
Yin Y, Cheng GM, Cheng H. Variation of bacterial community diversity and composition in saline-alkali soils reclaimed with flood irrigation and crop cultivation is driven by salinity and edaphic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177865. [PMID: 39652992 DOI: 10.1016/j.scitotenv.2024.177865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025]
Abstract
Reclamation is crucial for improving the fertility and productivity of saline-alkali soils, but the evolution of soil bacterial communities during the course of reclamation, which is an important feedback of soil micro-ecosystem, has received little attention. This study was conducted to investigate the variation of bacterial community diversity and composition in reclaimed saline-alkali soils based on space-for-time substitution, elucidate the underlying ecological mechanisms of bacterial community assembly processes, and identify the key driving factors of bacterial community evolution. The soil bacterial communities in undeveloped saline-alkali land and farmlands with different reclamation history (1-4, 5-6, and 10-25 years) in the Yellow River Delta, China, was analyzed by 16S rRNA gene amplicon sequencing. Soil bacterial diversity was found to increase significantly with reclamation history, and the entire bacterial community composition varied remarkably in the saline-alkali soils at different stages of reclamation. Halophilic and halotolerant bacteria dominated in the soils of undeveloped saline-alkali land (33.7 %), but their abundance diminished largely in the reclaimed soils. Analysis of bacterial community assembly processes suggested that heterogeneous selection dominated the change of bacterial communities in the saline-alkali soils that had been reclaimed for 1-4 years (52.8 %), 5-6 years (93.1 %), and 10-25 years (94.4 %). Salinity, soil organic carbon, pH, and moisture content were found to be the key environmental factors driving the evolution of bacterial communities in the reclaimed saline-alkali soils. While salinity directly shaped the bacterial community diversity, the other key drivers primarily governed the composition of bacterial communities in the saline-alkali soils during reclamation. These findings shed light on the probable ecological mechanisms of assembly processes and the environmental factors driving the soil bacterial communities during reclamation of saline-alkali lands, which could help better understand the evolution of soil bacterial communities under declining saline stress and optimize strategies to improve the agroecosystem health of saline-alkali lands.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Department of Architectural Engineering, Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima 7315193, Japan; Center for HOlobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima 7398530, Japan
| | - Grace M Cheng
- The Affiliated High School of Peking University, Beijing 100190, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Han Z, Zhao X, Tong B, Mu Y, Yang X, Hou Y, Zhu Z. Preparation of agriculture film from cow manure for silage maize planting: Experimental study and life cycle assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:465-476. [PMID: 39423712 DOI: 10.1016/j.wasman.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
With the development of modern breeding technology, the scale of dairy farming is becoming increasingly large, which leading to decoupling of planting and breeding. Hence, massive amounts of manure could not handled by traditional method in time, which caused serious environmental problems. Therefor, there is a urgent needs for industrialized treatment methods to treat cow manure for dairy farm industry. In order to expand the types of industrial treatment methods of cow manure, two types of industrialized cow manure based agriculture films were introduced in this research, manure slurry film (MSF) and manure paper film (MPF). Taking silage corn cultivation as an example, their feasibility were testified: the usage performances of the films were expanded by crop yield and soil physicochemical properties, and environmental impacts of the films was conducted by life cycle assessment (LCA). The results showed: (1) both MSF and MPF would decomposed in one growth period of silage maize, with MPF having better performance in temperature retention; (2) both MSF and MPF improved soil nutrients and agglomerate structures; (3) the yield of maize with MSF and MPF was increased from 62.6 t to 88.4 t and 84.6 t per hectare compared to control group; and (4) according to LCA, MPF had 39 % and 50 % lower average environment impact than PE film and MSF. In conclusion, manure based films could effectively promotes crop growth with lower environment impact compared with traditional methods, which thus might provide effective linkage strategies for coupling of planting and breeding.
Collapse
Affiliation(s)
- Zixi Han
- Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, PR China; China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China
| | - Xu Zhao
- China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China
| | - Bingxin Tong
- China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China; Hebei Agr Univ, Coll Resources & Environm Sci, Baoding 071000, PR China
| | - Yongsong Mu
- Huarui Agr Co Ltd, Liuba Ecoind Pk, Zhangye City 734500, Gansu, PR China
| | - Xiangjun Yang
- Huarui Agr Co Ltd, Liuba Ecoind Pk, Zhangye City 734500, Gansu, PR China; Chengdu Univ, Fac Mech Engn, Chengdu, PR China
| | - Yong Hou
- China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China.
| | - Zhiping Zhu
- Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, PR China
| |
Collapse
|
5
|
Xia Y, Wang S, Zhang X, Fu F, Deng H, Zhao Y, Yu H, Ge C. Deciphering how endogenous mangrove litterfall influences organic matters transformation driven by microbes in sediment with exogenous microplastics inputs. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135763. [PMID: 39270589 DOI: 10.1016/j.jhazmat.2024.135763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The effects of endogenous mangrove litterfall (MF) inputs on organic matter transformation in sediment polluted by exogenous microplastics (MPs) were investigated in this work, and their linkage with microbial characteristics was also explored. MF inputs significantly affected organic carbon transformation in MPs-polluted sediment by improving humification, enzymatic activities and carbon utilisation capacity of microbes. Such effects were mainly linked with the enrichment of microbes responsible for organic substance decomposition induced by MF inputs. Indeed, MF addition increased the relative abundance of fermentation- and cellulysis-assoicated bacteria, together with Saprotrophic fungi. Moreover, dissolved matters derived from MF played a non-neglected role in regulating organic carbon transformation in MPs-polluted sediment. Besides, MF addition decreased the complexity of bacterial community network in MPs-polluted sediment but fungal community network became complicated. And the complexity of microbial network was MF amount-dependent. Even though stochastic process was dominated in sediment with or without MF, MF inputs enhanced the relative contribution of determinism and reduced the migration of microbial communities. A strong response of sediment microbes to MF affected sedimentary organic matters transformation driven by microbes. This work uncovered linkages between organic carbon transformation and microbes in sediment with endogenous litterfall and exogenous MPs inputs in mangroves.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xinran Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Faying Fu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China.
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Danilov I, Vlajkov V, Šumić Z, Milić A, Horecki AT, Dujković T, Živanović N, Simin N, Lesjak M, Grahovac J. Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production. Foods 2024; 13:3224. [PMID: 39456286 PMCID: PMC11507418 DOI: 10.3390/foods13203224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Fruit juice production is one of the most important branches of the food and beverage industry, considering both the market size and demand. It is also one of the largest generators of industrial wastewater, considering the large consumption of fresh water during fruit processing. Hence, the appropriate treatment strategies are of the utmost importance to minimize the environmental footprint of food industry effluents. This study aimed to investigate the valorization routes for strawberry juice production wastewater (SJPW), both in terms of nutrient recovery and a circular approach to its utilization as a medium for plant biostimulant production. The results show a low antioxidant capacity and low content of polyphenols in SJPW; however, promising results were obtained for the in vitro seed germination and tomato growth promotion when investigating a biostimulant based on Bacillus sp. BioSol021, which was cultivated using SJPW in a lab-scale bioreactor, with root and shoot length improvements of approximately 30% and 25%, respectively, compared to the control samples. The plant growth promotion (PGP) traits indicated the ability of IAA production, in a concentration of 8.55 ± 0.05 mg/L, and the enzymatic activity was evaluated as through the enzymatic activity index (EAI), achieving the following: 2.26 ± 0.04 for cellulolytic activity, 2.49 ± 0.08 for hemicellulolytic activity, 2.91 ± 0.16 for pectinolytic activity, and 1.05 ± 0.00 for proteolytic activity. This study opens a new chapter of possibilities for the development of techno-economically viable circular bioprocess solutions aimed at obtaining value-added microbial products for sustainable agriculture based on the valorization of food industry effluents thus contributing to more sustainable food production at both the agricultural and industrial levels.
Collapse
Affiliation(s)
- Ivana Danilov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Zdravko Šumić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Anita Milić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Aleksandra Tepić Horecki
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Tatjana Dujković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Nemanja Živanović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.Ž.); (N.S.); (M.L.)
| | - Nataša Simin
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.Ž.); (N.S.); (M.L.)
| | - Marija Lesjak
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.Ž.); (N.S.); (M.L.)
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| |
Collapse
|
7
|
Lu G, Feng Z, Xu Y, Guan F, Jin Y, Zhang G, Hu J, Yu T, Wang M, Liu M, Yang H, Li W, Liang Z. Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure. PLANTS (BASEL, SWITZERLAND) 2024; 13:2818. [PMID: 39409688 PMCID: PMC11479165 DOI: 10.3390/plants13192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024]
Abstract
The improvement of saline-alkali land plays a key role in ensuring food security and promoting agricultural development. Saline soils modifies the response of the soil microbial community, but research is still limited. The effects of applying phosphogypsum with rice cultivation (PRC) on soil physicochemical properties and bacterial community in soda saline-alkali paddy fields in Songnen Plain, China were studied. The results showed that the PRC significantly improved the physicochemical properties of soil, significantly reduced the salinity, increased the utilization efficiency of carbon, nitrogen, and phosphorus, and significantly increased the activities of urease and phosphatase. The activities of urease and phosphatase were significantly correlated with the contents of total organic carbon and total carbon. A redundancy analysis showed that pH, AP, ESP, HCO3-, and Na+ were dominant factors in determining the bacterial community structure. The results showed that PRC could improve soil quality and enhance the ecosystem functionality of soda saline-alkali paddy fields by increasing nutrient content, stimulating soil enzyme activity, and regulating bacterial community improvement. After many years of PRC, the soda-alkali soil paddy field still develops continuously and healthily, which will provide a new idea for sustainable land use management and agricultural development.
Collapse
Affiliation(s)
- Guanru Lu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghui Feng
- College of Life Science, Baicheng Normal University, Baicheng 137000, China;
| | - Yang Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yangyang Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Guohui Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Jiafeng Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Tianhe Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Mingming Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Miao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Haoyu Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Zhengwei Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| |
Collapse
|
8
|
Sui J, Wang C, Chu P, Ren C, Hou F, Zhang Y, Shang X, Zhao Q, Hua X, Zhang H. Bacillus subtilis Strain YJ-15, Isolated from the Rhizosphere of Wheat Grown under Saline Conditions, Increases Soil Fertility and Modifies Microbial Community Structure. Microorganisms 2024; 12:2023. [PMID: 39458332 PMCID: PMC11510496 DOI: 10.3390/microorganisms12102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization during wheat cultivation considerably diminishes soil fertility and impedes wheat growth, primarily due to rhizosphere microbial community changes. Our study investigates the application of Bacillus subtilis YJ-15, a strain isolated from the rhizosphere of wheat cultivated in salinized soil, as a soil remediation agent. This strain has demonstrated significant salt tolerance, disease suppression capabilities, and growth-promoting attributes in previous studies. The wheat rhizosphere was examined to assess the impact of Bacillus subtilis YJ-15 on microbial community composition and soil fertility. Fertility of soil in saline soil was significantly increased by inoculating wheat with YJ-15. The microbial community structure within the wheat rhizosphere inoculated with Bacillus subtilis YJ-15 was analyzed through sequencing on the Illumina MiSeq platform. Phyla Proteobacteria and Acidobacteria were identified as the dominant bacteria. Basidiomycota, Mortierellomycota, and Ascomycota dominated the fungal phyla. Among the bacterial genera, Pseudomonas, Arthrobacter, and Bacillus were predominant. The predominant fungal genera included Alternaria, Cephalotrichum, Mortierella, and Chaetomium. A significant increase in Gaiella and Haliangium levels was observed in the YJ group compared to the control group. Additionally, the fungal genera Epicoccum, Sporidiobolus, and Lecythophora have significantly increased in YJ abundance. One of the potential benefits of Bacillus subtilis YJ-15 in the cultivation of wheat on salinized land is its ability to enhance the rhizosphere microbial community structure and improve soil fertility.
Collapse
Affiliation(s)
- Junkang Sui
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Chenyu Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Pengfei Chu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Changqing Ren
- Liaocheng Science and Technology Bureau, Liaocheng 252000, China;
| | - Feifan Hou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Yuxuan Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Xueting Shang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Qiqi Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Xuewen Hua
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Hengjia Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.S.); (C.W.); (P.C.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| |
Collapse
|
9
|
Jiang H, Okoye CO, Chen X, Zhang F, Jiang J. High-throughput 16S rRNA gene-based amplicon sequencing reveals the functional divergence of halophilic bacterial communities in the Suaeda salsa root compartments on the eastern coast of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173775. [PMID: 38844238 DOI: 10.1016/j.scitotenv.2024.173775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The rhizosphere environment of plants, which harbors halophilic bacterial communities, faces significant challenges in coping with environmental stressors, particularly saline soil properties. This study utilizes a high-throughput 16S rRNA gene-based amplicon sequencing to investigate the variations in bacterial community dynamics in rhizosphere soil (RH), root surface soil (RS), root endophytic bacteria (PE) compartments of Suaeda salsa roots, and adjoining soils (CK) across six locations along the eastern coast of China: Nantong (NT), Yancheng (YC), Dalian (DL), Tianjin (TJ), Dongying (DY), and Qingdao (QD), all characterized by chloride-type saline soil. Variations in the physicochemical properties of the RH compartment were also evaluated. The results revealed significant changes in pH, electrical conductivity, total salt content, and ion concentrations in RH samples from different locations. Notably, the NT location exhibited the highest alkalinity and nitrogen availability. The pH variations were linked to HCO3- accumulation in S. salsa roots, while salinity stress influenced soil pH through H+ discharge. Despite salinity stress, enzymatic activities such as catalase and urease were higher in soils from various locations. The diversity and richness of bacterial communities were higher in specific locations, with Proteobacteria dominating PE samples from the DL location. Additionally, Vibrio and Marinobacter were prevalent in RH samples. Significant correlations were found between soil pH, salinity, nutrient content, and the abundance and diversity of bacterial taxa in RH samples. Bioinformatics analysis revealed the prevalence of halophilic bacteria, such as Bacillus, Halomonas, and Streptomyces, with diverse metabolic functions, including amino acid and carbohydrate metabolisms. Essential genes, such as auxin response factor (ARF) and GTPase-encoding genes, were abundant in RH samples, suggesting adaptive strategies for harsh environments. Likewise, proline/betaine transport protein genes were enriched, indicating potential bioremediation mechanisms against high salt stress. These findings provide insight into the metabolic adaptations facilitating resilience in saline ecosystems and contribute to understanding the complex interplay between soil conditions, bacterial communities, and plant adaptation.
Collapse
Affiliation(s)
- Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xunfeng Chen
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fusheng Zhang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Rodríguez V, Bartholomäus A, Witzgall K, Riveras-Muñoz N, Oses R, Liebner S, Kallmeyer J, Rach O, Mueller CW, Seguel O, Scholten T, Wagner D. Microbial impact on initial soil formation in arid and semiarid environments under simulated climate change. Front Microbiol 2024; 15:1319997. [PMID: 38298893 PMCID: PMC10827993 DOI: 10.3389/fmicb.2024.1319997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
The microbiota is attributed to be important for initial soil formation under extreme climate conditions, but experimental evidence for its relevance is scarce. To fill this gap, we investigated the impact of in situ microbial communities and their interrelationship with biocrust and plants compared to abiotic controls on soil formation in initial arid and semiarid soils. Additionally, we assessed the response of bacterial communities to climate change. Topsoil and subsoil samples from arid and semiarid sites in the Chilean Coastal Cordillera were incubated for 16 weeks under diurnal temperature and moisture variations to simulate humid climate conditions as part of a climate change scenario. Our findings indicate that microorganism-plant interaction intensified aggregate formation and stabilized soil structure, facilitating initial soil formation. Interestingly, microorganisms alone or in conjunction with biocrust showed no discernible patterns compared to abiotic controls, potentially due to water-masking effects. Arid soils displayed reduced bacterial diversity and developed a new community structure dominated by Proteobacteria, Actinobacteriota, and Planctomycetota, while semiarid soils maintained a consistently dominant community of Acidobacteriota and Proteobacteria. This highlighted a sensitive and specialized bacterial community in arid soils, while semiarid soils exhibited a more complex and stable community. We conclude that microorganism-plant interaction has measurable impacts on initial soil formation in arid and semiarid regions on short time scales under climate change. Additionally, we propose that soil and climate legacies are decisive for the present soil microbial community structure and interactions, future soil development, and microbial responses.
Collapse
Affiliation(s)
- Victoria Rodríguez
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | | | - Kristina Witzgall
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Nicolás Riveras-Muñoz
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Romulo Oses
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copiapó, Chile
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Oliver Rach
- GFZ German Research Centre for Geosciences, Section Geomorphology, Potsdam, Germany
| | - Carsten W. Mueller
- Institute for Ecology, Chair of Soil Science, Technische Universitaet Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Oscar Seguel
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Jiang Z, Zhang P, Wu Y, Wu X, Ni H, Lu Q, Zang S. Long-term surface composts application enhances saline-alkali soil carbon sequestration and increases bacterial community stability and complexity. ENVIRONMENTAL RESEARCH 2024; 240:117425. [PMID: 37875172 DOI: 10.1016/j.envres.2023.117425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Organic composts could remediate saline-alkali soils on agricultural land by amending soil micro-environment which is one of the main strategies for resourceful treatment and recycling of livestock manure. However, it was still unknown how long-term surface application of organic composts affects the microhabitat and bacterial community characteristics and assembly processes on the profile. We examined the features of the soil properties, bacterial community, and assembly models after 7-years composts application. Physicochemical indicators, enzyme activities, and bacterial diversity of the saline-alkali farmland were all enhanced by the surface composts application, particularly in the 0-20 cm. The network analysis showed that the surface application of composts significantly enhanced the robustness and topological characteristics of the bacterial community and that bacteria from Acidobacteriota were the keystone of the saline-alkali soils improvement. Composts also greatly increased the ecological niche of the bacterial community, while stochastic processes (mainly dispersal limitation) significantly shaped the bacterial community compared to the control. Structural equation modeling indicated that composts application promoted bacterial community succession, which in turn promoted elevated total organic carbon and improved saline-alkali soils properties. Overall, the study linked the ecological characteristics of soil microhabitats and bacterial communities during the restoration of saline-alkali soils by long-term surface application of composts, providing the management and remediation of saline-alkali agricultural soil with a theoretical foundation and technological support.
Collapse
Affiliation(s)
- Ziwei Jiang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Pengfei Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Yufei Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Xiaodong Wu
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin 150040, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China.
| |
Collapse
|
12
|
Liu L, Chen Y, Zhang L, Bi X, Meng F, Luo Q. Effects of NaHCO 3 Stress on Black Locust ( Robinia pseudoacacia L.) Physiology, Biochemistry, and Rhizosphere Bacterial Communities. Microorganisms 2023; 11:2941. [PMID: 38138085 PMCID: PMC10745695 DOI: 10.3390/microorganisms11122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soil salinization has become an ecological and environmental problem that cannot be ignored. Tetraploid black locust (Robinia pseudoacacia L.) is a leguminous tree with characteristics of drought and saline-alkali tolerance. Rhizosphere bacteria are the primary functional microorganisms within the plant root system, and they play a crucial role in regulating plant growth and enhancing stress tolerance. However, there is still a lack of research on the effect of saline-alkali stress on the bacterial community structure in the rhizosphere of black locusts. In this study, we applied 0, 50, 100, and 150 mM NaHCO3 stress to diploid (2×) and tetraploid (4×) black locusts for 16 days. We used 16S rDNA sequencing to investigate the changes in the rhizosphere bacterial communities. Furthermore, we evaluated soil enzyme activity and plant physiological characteristics to explore the response of rhizosphere bacteria to NaHCO3 stress. The results demonstrated that the 4× plant exhibited superior alkali resistance compared to its 2× plant counterpart under NaHCO3 stress. Simultaneously, it was observed that low concentrations of NaHCO3 stress notably increased the abundance of rhizosphere bacteria in both plant types, while reducing their diversity. The impact of stress on the rhizosphere bacterial community weakened as the stress concentration increased. The application of NaHCO3 stress caused a significant change in the composition of the bacterial community in the rhizosphere. Additionally, alkaline salt stress influences the diversity of rhizosphere bacterial communities, which are linked to soil enzyme activities. These data will help us better understand the relationship between the dominant rhizosphere bacterial community and black locust. They will also provide a reference for further improving the alkali resistance of black locust by enhancing the soil bacterial community.
Collapse
Affiliation(s)
| | | | | | | | - Fanjuan Meng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (L.L.); (Y.C.); (L.Z.); (X.B.)
| | - Qiuxiang Luo
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (L.L.); (Y.C.); (L.Z.); (X.B.)
| |
Collapse
|
13
|
Cui H, Li Y, Wang W, Chen L, Han Z, Ma S, Wang W. Effects of Male and Female Strains of Salix linearistipularis on Physicochemical Properties and Microbial Community Structure in Saline-Alkali Soil. Microorganisms 2023; 11:2455. [PMID: 37894113 PMCID: PMC10609370 DOI: 10.3390/microorganisms11102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The woody plant gender difference may lead to alteration in rhizosphere microbial communities and soil physicochemical properties. In this study, we investigated the differences in rhizosphere soil properties and microbial community structures of S. linearistipularis. Rhizosphere microorganisms were analyzed by high-throughput sequencing technology. The results showed that there were significant differences in rhizosphere soil nutrition between male and female S. linearistipularis plants in saline-alkali soil. The female S. linearistipularis plants significantly reduce soil pH values and significantly increase the soil water content (SWC), available total nitrogen (TN), soil organic matter (SOM), and soil urease activity (S-UE) compared to the male plant. The ACE, Chao, and Shannon index of the female plant was significantly higher than that of the male strain. At the level of Bacteriophyta, the relative abundance of Actinobacteriota in male and female S. linearistipularis was the highest, with 34.26% and 31.03%, respectively. Among the named bacterial genera, the relative abundance of Defluviicoccus of male and female plants was the highest, with 2.67% and 5.27%, respectively. At the level of Eumycophyta, the relative abundance of Ascomycetes in male and female plants was the highest, with 54.93% and 52.10%, respectively. Among the named fungi genera, the relative abundance of male and female plants of Mortierella was the highest, with 6.18% and 9.31%, respectively. In addition, soil pH, SOM, SWC, and S-UE activities were the main driving factors of soil microbial community structures. In the process of restoring saline-alkali land in the Songnen Plain, we may prioritise the planting of female S. linearistipularis, which also provides a theoretical basis for the microorganisms restoration of saline-alkali land in the Songnen plain.
Collapse
Affiliation(s)
| | | | | | | | | | - Shurong Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weidong Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
14
|
Sakin E, Yanardağ İH, Ramazanoğlu E, Yalçın H. Enzyme activities and heavy metal interactions in calcareous soils under different land uses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:273-286. [PMID: 37480015 DOI: 10.1080/15226514.2023.2238818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
This study was carried out to examine the interaction of enzyme activities, microbial biomass carbon, and CO2 respiration with heavy metals under different land uses in terms of quality and sustainability of the soil. There is a statistically significant positive correlation between dehydrogenase enzyme activity and Mn, Pb, Cd, and Co, while it was negative between Cr. There was a positive correlation between catalase enzyme activity and Mn and Pb and between urease and Co. The higher interaction of dehydrogenase activity with heavy metals, which is included in the endo enzyme group, has been explained as a much stronger effect of heavy metals on living microorganisms and endoenzymes than extracellular enzymes stabilized on clay minerals and organic matter. The high clay content of the soil is thought to reduce some of the negative effects of heavy metals on enzymes. The results of this study may be good indicators of enzyme activities, especially dehydrogenase, catalase, and urease, for soil health and quality, chemical degradation and restoration processes, and ecosystem functioning in soils contaminated or to be contaminated with heavy metals. It shows that the activities of these enzymes are very sensitive and can decrease rapidly in case of high concentrations of heavy metals.
Collapse
Affiliation(s)
- Erdal Sakin
- Department of Soil Science and Plant Nutrition, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - İbrahim Halil Yanardağ
- Soil Science and Plant Nutrition Department, Malatya Turgut Özal University, Battalgazi, Malatya, Turkey
| | - Emrah Ramazanoğlu
- Department of Soil Science and Plant Nutrition, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Hamza Yalçın
- Department of Soil Science and Plant Nutrition, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
15
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. The Usability of Sorbents in Restoring Enzymatic Activity in Soils Polluted with Petroleum-Derived Products. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103738. [PMID: 37241368 DOI: 10.3390/ma16103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Due to their ability to adsorb or absorb chemical pollutants, including organic compounds, sorbents are increasingly used in the reclamation of soils subjected to their pressure, which results from their high potential in eliminating xenobiotics. The precise optimization of the reclamation process is required, focused primarily on restoring the condition of the soil. This research are essential for seeking materials sufficiently potent to accelerate the remediation process and for expanding knowledge related to biochemical transformations that lead to the neutralization of these pollutants. The goal of this study was to determine and compare the sensitivity of soil enzymes to petroleum-derived products in soil sown with Zea mays, remediated using four sorbents. The study was conducted in a pot experiment, with loamy sand (LS) and sandy loam (SL) polluted with VERVA diesel oil (DO) and VERVA 98 petrol (P). Soil samples were collected from arable lands, and the effects of the tested pollutants were compared with those used as control uncontaminated soil samples in terms of Zea mays biomass and the activity of seven enzymes in the soil. The following sorbents were applied to mitigate DO and P effects on the test plants and enzymatic activity: molecular sieve (M), expanded clay (E), sepiolite (S), and Ikasorb (I). Both DO and P exerted a toxic effect on Zea mays, with DO more strongly disturbing its growth and development and the activities of soil enzymes than P. In sandy clay (SL), P was found to be a significant inhibitor of dehydrogenases (Deh), catalase (Cat), urease (Ure), alkaline phosphatase (Pal), and arylsulfatase (Aryl) activities, while DO stimulated the activity of all enzymes in this soil. The study results suggest that the sorbents tested, mainlya molecular sieve, may be useful in remediating DO-polluted soils, especially when alleviating the effects of these pollutants in soils of lower agronomic value.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
16
|
Cao Y, Song H, Zhang L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int J Mol Sci 2022; 23:ijms232416048. [PMID: 36555693 PMCID: PMC9781758 DOI: 10.3390/ijms232416048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3-/CO32- stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3-/CO32- stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding.
Collapse
|
17
|
Li X, Liu Y, Wang Z, Yang C, Zhang R, Luo Y, Ma Y, Deng Y. Microbiome analysis and biocontrol bacteria isolation from rhizosphere soils associated with different sugarcane root rot severity. Front Bioeng Biotechnol 2022; 10:1062351. [PMID: 36588942 PMCID: PMC9802638 DOI: 10.3389/fbioe.2022.1062351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
To explore the causal pathogen and the correlated rhizosphere soil microecology of sugarcane root rot, we sampled the sugarcane root materials displaying different disease severity, and the corresponding rhizosphere soil, for systematic root phenotype and microbial population analyses. We found that with increased level of disease severity reflected by above-ground parts of sugarcane, the total root length, total root surface area and total volume were significantly reduced, accompanied with changes in the microbial population diversity and structure in rhizosphere soil. Fungal community richness was significantly lower in the rhizosphere soil samples from mildly diseased plant than that from either healthy plant, or severely diseased plant. Particularly, we noticed that a peculiar decrease of potential pathogenic fungi in rhizosphere soil, including genera Fusarium, Talaromyces and Neocosmospora, with increased level of disease severity. As for bacterial community, Firmicutes was found to be of the highest level, while Acidobacteria and Chloroflexi of the lowest level, in rhizosphere soil from healthy plant compared to that from diseased plant of different severity. FUNGuild prediction showed that the proportion of saprophytic fungi was higher in the rhizosphere soil of healthy plants, while the proportion of pathogenic fungi was higher in the rhizosphere soil of diseased plants. By co-occurrence network analysis we demonstrated the Bacillus and Burkholderia were in a strong interaction with Fusarium pathogen(s). Consistently, the biocontrol and/or growth-promoting bacteria isolated from the rhizosphere soil were mostly (6 out of 7) belonging to Bacillus and Burkholderia species. By confrontation culture and pot experiments, we verified the biocontrol and/or growth-promoting property of the isolated bacterial strains. Overall, we demonstrated a clear correlation between sugarcane root rot severity and rhizosphere soil microbiome composition and function, and identified several promising biocontrol bacteria strains with strong disease suppression effect and growth-promoting properties.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yue Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- Laboratory of Crop Physiology and Field Ecology, Northwest A&F University, Yangling, China
| | - Ziting Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Chenglong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Runzhi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yibao Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yuming Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|