1
|
Hamada T, Yokoyama S, Akahane T, Matsuo K, Kitazono I, Furukawa T, Tanimoto A. Electroporation Induces Unexpected Alterations in Gene Expression: A Tip for Selection of Optimal Transfection Method. Curr Issues Mol Biol 2025; 47:91. [PMID: 39996812 PMCID: PMC11854308 DOI: 10.3390/cimb47020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Electroporation is an efficient method for nucleotide and protein transfer, and is used for clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-mediated genome editing. In this study, we investigated the effects of electroporation on platelet-derived growth factor receptor alpha (PDGFRA) and receptor tyrosine kinase (RTK) expression in U-251 and U-87 MG cells. PDGFRA mRNA and protein expression decreased 2 days after electroporation in both cell lines, with recovery observed after 13 days in U-87 MG cells. However, in U-251 MG cells, PDGFRα expression remained suppressed, despite mRNA recovery after 13 days. Similar expression profiles were observed for lipofection in the U-251 MG cells. Comprehensive RNA sequencing confirmed electroporation-induced up- and down-regulation of RTK mRNA in U-251 MG cells 2 days post-electroporation. In contrast, recombinant adeno-associated virus (rAAV) transfected with mNeonGreen fluorescent protein or Cas9 did not affect PDGFRA, RTKs, or inflammatory cytokine expression, suggesting fewer adverse effects of rAAV on U-251 MG cells. These findings emphasize the need for adequate recovery periods following electroporation or the adoption of alternative methods, such as rAAV transfection, to ensure the accurate assessment of CRISPR-mediated gene editing outcomes.
Collapse
Affiliation(s)
- Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kei Matsuo
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ikumi Kitazono
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Surgical Pathology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tatsuhiko Furukawa
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Center for Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
2
|
Yan J, wen Hu J, Cheng N, Li N, Xin A, Wu Z, Wu Z, Lei J, Zhang S, Yao J. WISP1 Inhibits Hepatocellular Carcinoma Cell Proliferation by Promoting CyclinD1 Ubiquitination and Downregulating its Expression. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 36:247-254. [PMID: 39763353 PMCID: PMC12001460 DOI: 10.5152/tjg.2024.23524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/26/2024] [Indexed: 04/11/2025]
Abstract
Background/Aims Hepatocellular carcinoma (HCC), a leading cause of cancer-related deaths, is often linked to dysregulated cell cycle proteins. This study focuses on the role of WISP1 in modulating Cyclin D1, a key cell cycle regulator, in HCC. Materials and Methods The study used HCCLM3 and Hep3B cells to assess the expression of Cyclin D1 and cell proliferation following the treatment of WISP1. This was achieved through Western blot, qRT-PCR, and EdU assays. Additionally, animal studies were conducted to evaluate the effects of WISP1 treatment on Cyclin D1 expression and cell proliferation. Results Overexpression of WISP1 in HCC cells led to a marked decrease in Cyclin D1 protein levels and reduced cell proliferation. WISP1 influences Cyclin D1 through post-translational modifications, particularly ubiquitination and proteasomal degradation. Conclusion The findings revealed that WISP1’s modulation of Cyclin D1 plays a critical role in inhibiting HCC cell growth, highlighting a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jinlong Yan
- Department of General Surgery, The Second AffiliatedHospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jun wen Hu
- Department of General Surgery, The Second AffiliatedHospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Na Cheng
- Department of General Surgery, The Second AffiliatedHospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Jiangxi, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou China
- Department of Operation Room, The Second Affiliated Hospital, Nanchang University Jiangxi Medical College, Jiangxi, China
- Department of Endocrinology, the Fourth Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Nuoya Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou China
| | - Anqi Xin
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhipeng Wu
- Department of General Surgery, The Second AffiliatedHospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Zhengyi Wu
- Department of General Surgery, The Second AffiliatedHospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jun Lei
- Department of General Surgery, The Second AffiliatedHospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Shouhua Zhang
- Department of General Surgery, The Second AffiliatedHospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jinping Yao
- Department of Operation Room, The Second Affiliated Hospital, Nanchang University Jiangxi Medical College, Jiangxi, China
| |
Collapse
|
3
|
Fares J, Wan Y, Mair R, Price SJ. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun 2024; 6:fcae108. [PMID: 38646145 PMCID: PMC11032202 DOI: 10.1093/braincomms/fcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.
Collapse
Affiliation(s)
- Jawad Fares
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yizhou Wan
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard Mair
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
4
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
5
|
Qiao X, Chen Y, Wang Z, Peng N, Niu W, Hou S, Wu J, Ji Y, Niu C, Cheng C. GTF2E2 downregulated by miR-340-5p inhibits the malignant progression of glioblastoma. Cancer Gene Ther 2023; 30:1702-1714. [PMID: 37845349 DOI: 10.1038/s41417-023-00676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Glioblastoma is the most common malignant tumor in the central nervous system. The general transcription factor IIE subunit beta (GTF2E2) is crucial for physiological and pathological functions, but its roles in the malignant biological function of glioma remain ambiguous. CCK-8, colony formation assays, TUNEL assays, cell migration assays, wound-healing assays, and xenograft model were established to investigate the biological functions of GTF2E2 both in vitro and in vivo. GTF2E2 was overexpressed in glioma and was associated with poor prognosis of glioma patients. Biological functions of GTF2E2 were investigated both in vitro and in vi0vo by multiple experiments. Moreover, we explored the possible mechanisms of GTF2E2. In our results, we demonstrated that GTF2E2 could be regulated by miR-340-5p directly or indirectly. CCND1 was transcriptionally affected by GTF2E2 and glioma progression was then regulated. Our data presented the overexpression of GTF2E2 in glioma and indicated the association between GTF2E2 and glioma prognosis. GTF2E2 was found to be regulated by miR-340-5p and thus affect downstream gene expressions and glioma progression. Our results indicate that GTF2E2 might be a potential target in the diagnosis and treatments of glioblastoma.
Collapse
Affiliation(s)
- Xiaolong Qiao
- Anhui University of Science and Technology, 232001, Huainan, Anhui, China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Yinan Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Zixuan Wang
- Dalian Medical University, 116000, Dalian, Liaoning, China
| | - Nan Peng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, 239000, Chuzhou, Anhui, China
| | - Jiaying Wu
- Bengbu Medical College, 233000, Bengbu, Anhui, China
| | - Ying Ji
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| | - Chuandong Cheng
- Anhui University of Science and Technology, 232001, Huainan, Anhui, China.
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
6
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
7
|
Hamada T, Yokoyama S, Akahane T, Matsuo K, Tanimoto A. Genome Editing Using Cas9 Ribonucleoprotein Is Effective for Introducing PDGFRA Variant in Cultured Human Glioblastoma Cell Lines. Int J Mol Sci 2022; 24:ijms24010500. [PMID: 36613947 PMCID: PMC9820287 DOI: 10.3390/ijms24010500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Many variants of uncertain significance (VUS) have been detected in clinical cancer cases using next-generation sequencing-based cancer gene panel analysis. One strategy for the elucidation of VUS is the functional analysis of cultured cancer cell lines that harbor targeted gene variants using genome editing. Genome editing is a powerful tool for creating desired gene alterations in cultured cancer cell lines. However, the efficiency of genome editing varies substantially among cell lines of interest. We performed comparative studies to determine the optimal editing conditions for the introduction of platelet-derived growth factor receptor alpha (PDGFRA) variants in human glioblastoma multiforme (GBM) cell lines. After monitoring the copy numbers of PDGFRA and the expression level of the PDGFRα protein, four GBM cell lines (U-251 MG, KNS-42, SF126, and YKG-1 cells) were selected for the study. To compare the editing efficiency in these GBM cell lines, the modes of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) delivery (plasmid vs. ribonucleoprotein (RNP)), methods of transfection (lipofection vs. electroporation), and usefulness of cell sorting were then evaluated. Herein, we demonstrated that electroporation-mediated transfer of Cas9 with single-guide RNA (Cas9 RNP complex) could sufficiently edit a target nucleotide substitution, irrespective of cell sorting. As the Cas9 RNP complex method showed a higher editing efficiency than the Cas9 plasmid lipofection method, it was the optimal method for single-nucleotide editing in human GBM cell lines under our experimental conditions.
Collapse
|
8
|
Higa N, Akahane T, Yokoyama S, Yonezawa H, Uchida H, Fujio S, Kirishima M, Takigawa K, Hata N, Toh K, Yamamoto J, Hanaya R, Tanimoto A, Yoshimoto K. Molecular Genetic Profile of 300 Japanese Patients with Diffuse Gliomas Using a Glioma-tailored Gene Panel. Neurol Med Chir (Tokyo) 2022; 62:391-399. [PMID: 36031351 PMCID: PMC9534570 DOI: 10.2176/jns-nmc.2022-0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rapid technological advances in molecular biology, including next-generation sequencing, have identified key genetic alterations in central nervous system (CNS) tumors. Accordingly, the fifth edition of the World Health Organization (WHO) CNS tumor classification was published in 2021. We analyzed 303 patients with diffuse glioma using an amplicon-based glioma-tailored gene panel for detecting 1p/19q codeletion and driver gene mutations such as IDH1/2, TERTp, EGFR, and CDKN2A/B on a single platform. Within glioblastomas (GBMs), the most commonly mutated genes were TERTp, TP53, PTEN, NF1, and PDGFRA, which was the most frequently mutated tyrosine kinase receptor in GBM, followed by EGFR. The genes that most commonly showed evidence of loss were PTEN, CDKN2A/B, and RB1, whereas the genes that most commonly showed evidence of gain/amplification were EGFR, PDGFRA, and CDK4. In 22 grade III oligodendroglial tumors, 3 (14%) patients had CDKN2A/B homozygous deletion, and 4 (18%) patients had ARID1A mutation. In grade III oligodendroglial tumors, an ARID1A mutation was associated with worse progression-free survival. Reclassification based on the WHO 2021 classification resulted in 62.5% of grade II/III isocitrate dehydrogenase (IDH)-wildtype astrocytomas being classified as IDH-wildtype GBM and 37.5% as not elsewhere classified. In summary, our glioma-tailored gene panel was applicable for molecular diagnosis in the WHO 2021 classification. In addition, we successfully reclassified the 303 diffuse glioma cases based on the WHO 2021 classification and clarified the genetic profile of diffuse gliomas in the Japanese population.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shingo Fujio
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Keita Toh
- Department of Neurosurgery, University of Occupational and Environmental Health
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
9
|
Kuo YH, Hung HS, Tsai CW, Chiu SC, Liu SP, Chiang YT, Shyu WC, Lin SZ, Fu RH. A Novel Splice Variant of BCAS1 Inhibits β-Arrestin 2 to Promote the Proliferation and Migration of Glioblastoma Cells, and This Effect Was Blocked by Maackiain. Cancers (Basel) 2022; 14:cancers14163890. [PMID: 36010884 PMCID: PMC9405932 DOI: 10.3390/cancers14163890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that β-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of β-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and β-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the β-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.
Collapse
Affiliation(s)
- Yun-Hua Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-422052121-7826
| |
Collapse
|