1
|
Yu YH, He JL, Wang HL, Weng GJ, Wu JQ, Lu JM, Shao LX. 2D Cerium-Organic Frameworks as an Efficient Heterogeneous Catalyst for the Synthesis of 1,4-Dihydropyridines via Hantzsch Reaction. Chem Asian J 2025; 20:e202400977. [PMID: 39575600 DOI: 10.1002/asia.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Herein, a new two-dimensional (2D) Ce-organic frameworks (referred to as SLX-4) was achieved by traditional solvothermal conditions. Initial studies of SLX-4 toward Hantzsch reaction showed that good catalytic activity can be obtained under mild conditions, giving the desired 1,4-dihydropyridines in moderate to high yields. The catalyst could be reused at least 4 times keeping good catalytic activity. Moreover, compared to the previously reported MOFs catalysts for Hantzsch reactions, SLX-4 was stable in most acidic and basic environment, and gave comparable yield.
Collapse
Affiliation(s)
- Yi-Han Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jia-Lu He
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Hai-Lan Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Guang-Ju Weng
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jia-Qi Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jian-Mei Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Li-Xiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
2
|
Gao P, Hussain MZ, Zhou Z, Warnan J, Elsner M, Fischer RA. Zr-based metalloporphyrin MOF probe for electrochemical detection of parathion-methyl. Biosens Bioelectron 2024; 261:116515. [PMID: 38909444 DOI: 10.1016/j.bios.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
An electrochemical (EC) sensor based on metalloporphyrin metal-organic framework (MOF) for the detection of parathion-methyl (PM) has been developed. The prepared MOF-525(Fe) exhibits great signal enhancement toward the electrochemical detection of PM owing to its unique structural properties and electrochemical activities. Under optimal experimental conditions, the as-prepared MOF-525(Fe) based EC sensor exhibited excellent PM sensing performance with a wide linear detection range (0.1 μM-100 μM) and low limit of detection (LOD, 1.4 nM). Compared to its corresponding Fe metalloporphyrin (linker), MOF-525(Fe) exhibited a superior sensitivity (28.31 μA cm-2·μM-1), which is 3.7 times higher than the sensitivity of FeTCPP linker (7.56 μA cm-2·μM-1) towards PM. The improved performance is associated with the high specific surface area and the large pore channels of MOF-525(Fe) facilitating a better interaction between PM and the Fe metalloporphyrin active sites, especially in the lower concentration range. Moreover, a possible affinity of the PM molecules toward Zr6 clusters may also contribute to the selective enrichment of PM on MOF-525(Fe). This EC sensor further demonstrated high selectivity in the presence of interfering molecules. The recovery results further confirm accurate PM sensing in actual samples, which suggests promising applications for the rapid detection of environmental organophosphates by metalloporphyrin MOFs.
Collapse
Affiliation(s)
- Pan Gao
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Mian Zahid Hussain
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Zhenyu Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Julien Warnan
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Roland A Fischer
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
3
|
Hanifi S, Dekamin MG, Eslami M. Magnetic BiFeO 3 nanoparticles: a robust and efficient nanocatalyst for the green one-pot three-component synthesis of highly substituted 3,4-dihydropyrimidine-2(1H)-one/thione derivatives. Sci Rep 2024; 14:22201. [PMID: 39333595 PMCID: PMC11436662 DOI: 10.1038/s41598-024-72407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, magnetic bismuth ferrite nanoparticles (BFO MNPs) were prepared through a convenient method and characterized. The structure and morphological characteristics of the prepared nanomaterial were confirmed through analyses using Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, powder X-ray diffraction (XRD), N2 adsorption-desorption isotherms and vibrating sample magnetometry (VSM) techniques. The obtained magnetic BFO nanomaterial was investigated, as a heterogeneous Lewis acid, in three component synthesis of 3,4-dihydropyrimidin-2 (1H)-ones/thiones (DHPMs/DHPMTs). It was found that the BFO MNPs exhibit remarkable efficacy in the synthesis of various DHPMs as well as their thione analogues. It is noteworthy that this research features low catalyst loading, good to excellent yields, environmentally friendly conditions, short reaction time, simple and straightforward work-up, and the reusability of the catalyst, distinguishing it from other recently reported protocols. Additionally, the structure of the DHPMs/DHPMTs was confirmed through 1H NMR, FTIR, and melting point analyses. This environmentally-benign methodology demonstrates the potential of the catalyst for more sustainable and efficient practices in green chemistry.
Collapse
Affiliation(s)
- Safa Hanifi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Eslami
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, 63616-63973, Iran
| |
Collapse
|
4
|
Mohammed Ameen SS, Omer KM. Dual-State Red-Emitting Zinc-Based MOF Accompanied by Dual-Mode and Dual-State Detection: Color Tonality Visual Mode for the Detection of Tetracycline. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51376-51383. [PMID: 39270310 DOI: 10.1021/acsami.4c13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Red-emitting metal-organic frameworks (MOFs) are still mostly based on the use of lanthanides or functionalization with red fluorophores. However, production of transition-metal-based MOFs with red-emitting is scarce. This work reports on the synthesis of a novel dual-state red-emitting Zn-based MOF (denoted as UoZ-7) with the capability to detect target molecules in dual state, in solution, and as solid on paper. UoZ-7 gives strong red emission when excited in the solution and in the solid state with 365 nm ultraviolet (UV) lamp irradiation. Coordination-induced emission is the mechanism for the red emission enhancement in the MOF as a restriction of intramolecular rotation occurred to the ligand within the framework structure. UoZ-7 was successfully used for tetracycline (TC) using dual-mode detection, fluorescence-based ratiometry, and color tonality, in the dual state, in solution, and on the paper. TC molecules adsorb on the red-emitting UoZ-7 surface, and a yellow-greenish color emerges due to aggregation-induced emission between TC and UoZ-7. Concurrently, the inner filter effect diminishes the red emission of UoZ-7. The dual-mode or dual-state detection platform provides a simple and reliable fast method for the detection of TC on-site in various environmental and biomedical applications. Moreover, red-emitting UoZ-7 will have further luminescence-based biomedical applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 42002 Zakho, Kurdistan Region, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymanyia, Kurdistan Region, Iraq
| |
Collapse
|
5
|
Nikseresht A, Ghoochi F, Mohammadi M. Postsynthetic Modification of Amine-Functionalized MIL-101(Cr) Metal-Organic Frameworks with an EDTA-Zn(II) Complex as an Effective Heterogeneous Catalyst for Hantzsch Synthesis of Polyhydroquinolines. ACS OMEGA 2024; 9:28114-28128. [PMID: 38973916 PMCID: PMC11223138 DOI: 10.1021/acsomega.4c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
The present work aims at preparing the EDTA-Zn(II) complex-supported on the amine-functionalized MIL-101(Cr) MOF-as a new and effective heterogenized catalyst. The optimization of the hydrothermal process shows that 120 °C is the best condition to grow the MIL-101(Cr)-NH2 MOF crystals. Moreover, regarding the use of the postsynthetic modification (PSM) method, hexadentate EDTA was grafted on this support via a simple aminolysis process before further coordinating it with Zn ions to create the corresponding Zn(II) catalytic complex. The catalytic activity of this compound was then investigated in the context of a one-pot synthesis of polyhydroquinolines. This approach has a number of advantages including the following: the use of a solvent that is not hazardous, applying a porous catalyst that is inexpensive, secure, and recyclable; rapid reaction times, high levels of efficiency, and the simplicity of MOF catalyst separation. Accordingly, the process in question can be given the label of "green chemistry".
Collapse
Affiliation(s)
- Ahmad Nikseresht
- Department
of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran
| | - Fatemeh Ghoochi
- Department
of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran
| | - Masoud Mohammadi
- Department
of Chemistry, Faculty of Science, Ilam University, 69315-516 Ilam, Iran
| |
Collapse
|
6
|
Liu F, Song J, Li S, Sun H, Wang J, Su F, Li S. Chitosan-based GOx@Co-MOF composite hydrogel: A promising strategy for enhanced antibacterial and wound healing effects. Int J Biol Macromol 2024; 270:132120. [PMID: 38740153 DOI: 10.1016/j.ijbiomac.2024.132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
A novel composite hydrogel was synthesized via Schiff base reaction between chitosan and di-functional poly(ethylene glycol) (DF-PEG), incorporating glucose oxidase (GOx) and cobalt metal-organic frameworks (Co-MOF). The resulting CS/PEG/GOx@Co-MOF composite hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDS). The results confirmed successful integration and uniform distribution of Co-MOF within the hydrogel matrix. Functionally, the hydrogel exploits the catalytic decomposition of glucose by GOx to generate gluconic acid and hydrogen peroxide (H2O2), while Co-MOF gradually releases metal ions and protects GOx. This synergy enhanced the antibacterial activity of the composite hydrogel against both Gram-positive (S. aureus) and Gram-negative bacteria (E. coli), outperforming conventional chitosan-based hydrogels. The potential of the composite hydrogel in treating wound infections was evaluated through antibacterial and wound healing experiments. Overall, CS/PEG/GOx@Co-MOF hydrogel holds great promise for the treatment of wound infections, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Fangyu Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Sihan Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haozhi Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinjun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China.
| | - Feng Su
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Suming Li
- Institut Europeen des Membranes, UMR CNRS 5635, Universite de Montpellier, 34095 Montpellier, France.
| |
Collapse
|
7
|
Ismail M, Ahmad R, Halim SA, Khan AA, Ullah S, Latif A, Ahmad M, Khan A, Ozdemir FA, Khalid A, Al-Harrasi A, Ali M. Synthesis of hydrazone-based polyhydroquinoline derivatives - antibacterial activities, α-glucosidase inhibitory capability, and DFT study. RSC Adv 2024; 14:10978-10994. [PMID: 38577436 PMCID: PMC10993858 DOI: 10.1039/d4ra00045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
In recent years, polyhydroquinolines have gained much attention due to their widespread applications in medicine, agriculture, industry, etc. Here, we synthesized a series of novel hydrazone-based polyhydroquinoline derivatives via multi-step reactions. These molecules were characterized by modern spectroscopic techniques (1H-NMR, 13C NMR, and LC-HRMS) and their antibacterial and in vitro α-glucosidase inhibitory activities were assessed. Compound 8 was found to be the most active inhibitor against Listeria monocytogenes NCTC 5348, Bacillus subtilis IM 622, Brevibacillus brevis, and Bacillus subtilis ATCC 6337 with a zone of inhibition of 15.3 ± 0.01, 13.2 ± 0.2, 13.1 ± 0.1, and 12.6 ± 0.3 mm, respectively. Likewise, compound 8 also exhibited the most potent inhibitory potential for α-glucosidase (IC50 = 5.31 ± 0.25 μM) in vitro, followed by compounds 10 (IC50 = 6.70 ± 0.38 μM), and 12 (IC50 = 6.51 ± 0.37 μM). Furthermore, molecular docking and DFT analysis of these compounds showed good agreement with experimental work and the nonlinear optical properties calculated here indicate that these compounds are good candidates for nonlinear optics.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Chemistry, University of Malakand P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
- Central for Computational Materials Science P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
| | - Rashid Ahmad
- Department of Chemistry, University of Malakand P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa Nizwa 616 Oman
| | - Adnan Ali Khan
- Department of Chemistry, University of Malakand P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
- Central for Computational Materials Science P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa Nizwa 616 Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa Nizwa 616 Oman
| | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University Bingol Turkey
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University P.O. Box: 114 Jazan 45142 Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa Nizwa 616 Oman
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand P.O. Box 18800 Dir Lower Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
8
|
Karimi SY, Marofi S, Zare MA. Fabricating pentaazatetraethylene modified sulfonated polyacrylamide for dye adsorption from aqueous media: isotherms and kinetics models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25849-25866. [PMID: 38488921 DOI: 10.1007/s11356-024-32590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
In this study, pentaazatetraethylene-modified sulfonated polyacrylamide (PAm-SO3-N5) was synthesized and used as a novel efficient adsorbent to remove calmagite from aqueous media. To this end, a central composite design (CCD) was applied to reduce the number of reaction variables (i.e., adsorbent concentration, temperature, initial concentration, and pH) on calmagite removal. The results showed that calmagite was entirely adsorbed by the PAm-SO3-N5 within 30 min. In addition, a pseudo-second-order (PSO) model was prepared as the optimum formula to fit the kinetics information. The modeling results revealed that film diffusion and adsorption are rate-limiting stages to remove the dyes. Using a Langmuir isotherm to fit the equilibrium data, the highest equilibrium adsorption was calculated to be 1732.5 mg/g. In the present study, the ΔH value indicates that the adsorption is of chemical type. Also, the negative sign of ΔS° shows that PAm-SO3-N5 removes calmagite during a relatively stable process with randomness in the system. The increase in ΔG° values with increasing temperature indicates a descending trend in the feasibility degree of calmagite adsorption. Eventually, recycling the adsorbent for 7 cycles to adsorb calmagite dye showed no remarkable activity loss.
Collapse
Affiliation(s)
| | - Safar Marofi
- Water Engineering Department, Bu Ali Sina University, Hamedan, Iran.
| | - Mohamad Ali Zare
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
9
|
Mutlu S, Ortaç B, Ozbey DH, Durgun E, Savaskan Yılmaz S, Arsu N. Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties. Polymers (Basel) 2024; 16:217. [PMID: 38257016 PMCID: PMC10820686 DOI: 10.3390/polym16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we designed a platform based on a laser-driven approach for fast, efficient, and controllable MOF synthesis. The laser irradiation method was performed for the first time to synthesize Zn-based MOFs in record production time (approximately one hour) compared to all known MOF production methods with comparable morphology. In addition to well-known structural properties, we revealed that the obtained ZnMOFs have a novel optical response, including photoluminescence behavior in the visible range with nanosecond relaxation time, which is also supported by first-principles calculations. Additionally, photocatalytic degradation of methylene blue with ZnMOF was achieved, degrading the 10 ppm methylene blue (MB) solution 83% during 1 min of irradiation time. The application of laser technology can inspire the development of a novel and competent platform for a fast MOF fabrication process and extend the possible applications of MOFs to miniaturized optoelectronic and photonic devices.
Collapse
Affiliation(s)
- Saliha Mutlu
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Bülend Ortaç
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Dogukan Hazar Ozbey
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Engin Durgun
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Sevil Savaskan Yılmaz
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey
| |
Collapse
|
10
|
Gawas PP, Pandurangan P, Rabiei M, Palevicius A, Vilkauskas A, Janusas G, Hosseinnezhad M, Ebrahimi-Kahrizsangi R, Nasiri S, Nunzi JM, Nutalapati V. Significance of Zn Complex Concentration on Microstructure Evolution and Corrosion Behavior of Al/WS 2. Molecules 2023; 28:7290. [PMID: 37959710 PMCID: PMC10650769 DOI: 10.3390/molecules28217290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Corrosion is a harmful processes which by definition is a chemical or electrochemical reaction between a substance (usually a metal) and the environment which leads to a change in the properties of the substance and has destructive effects. In this study, new composites consisting of Al/WS2/ZnTerp-2TH with 5 and 10 wt.% ZnTerp-2TH were prepared and the results were fully compared. Al/WS2 played the role of matrix and ZnTerp-2TH played the role of reinforcement. In other words, as a novelty to prevent the corrosion of Al/WS2, ZnTerp-2TH is designed and synthesized and showed good results when the corrosion ratio was reduced by the existence of ZnTerp-2TH. Furthermore, the NMR and mass analysis of ZnTerp-2TH were carried out, and the thermal properties, X-ray diffraction, Fourier-transform infrared (FTIR) spectroscopy, morphology, energy-dispersive X-ray spectroscopy (EDX) analysis and corrosion behavior of the composites were also discussed in detail. The crystal size values of composites were calculated by the modified Scherrer method 34, 26 and 27 nm for Al/WS2, Al/WS2/5 wt.% ZnTerp-2TH and Al/WS2/10 wt.% ZnTerp-2TH, respectively. The microstructural examination of the specimens showed that the reinforcing phase (ZnTerp-2TH) has a favorable distribution on the surface of Al/WS2 when it covers the cracks and holes. In addition, the corrosion investigation results showed that the addition of ZnTerp-2TH to Al/WS2 can improve the corrosion resistance when the Ecorr and Icorr values of Al/WS2/10 wt.% ZnTerp-2TH were recorded in tandem -724 mV/decade and 5 uA cm-2.
Collapse
Affiliation(s)
- Pratiksha P. Gawas
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India; (P.P.G.); (P.P.)
| | - Praveenkumar Pandurangan
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India; (P.P.G.); (P.P.)
| | - Marzieh Rabiei
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, LT 51373 Kaunas, Lithuania; (M.R.); (A.P.); (A.V.); (G.J.)
| | - Arvydas Palevicius
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, LT 51373 Kaunas, Lithuania; (M.R.); (A.P.); (A.V.); (G.J.)
| | - Andrius Vilkauskas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, LT 51373 Kaunas, Lithuania; (M.R.); (A.P.); (A.V.); (G.J.)
| | - Giedrius Janusas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, LT 51373 Kaunas, Lithuania; (M.R.); (A.P.); (A.V.); (G.J.)
| | - Mozhgan Hosseinnezhad
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran 1668836471, Iran;
| | - Reza Ebrahimi-Kahrizsangi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad Isfahan 85141-43131, Iran;
| | - Sohrab Nasiri
- Faculty of Mechanical Engineering, Optical Measurement Laboratory, Kaunas University of Technology, Studentu Street 56, L-116, LT 51373 Kaunas, Lithuania
- Department of Physics, Engineering Physics & Astronomy, Queens University, Kingston, ON K7L-3N6, Canada;
| | - Jean Michel Nunzi
- Department of Physics, Engineering Physics & Astronomy, Queens University, Kingston, ON K7L-3N6, Canada;
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India; (P.P.G.); (P.P.)
| |
Collapse
|
11
|
Moghadaskhou F, Hosseini AK, Tadjarodi A, Abroudi M. Amino-induced cadmium metal-organic framework based on thiazole ligand as a heterogeneous catalyst for the epoxidation of alkenes. Sci Rep 2023; 13:15391. [PMID: 37717066 PMCID: PMC10505202 DOI: 10.1038/s41598-023-42666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Selective epoxidation of olefins is of high interest in the chemical industry due to the many applications of epoxides. This study reports on the synthesis of Cd-MOF, [Cd(DPTTZ)(5-AIP)] (IUST-1) (where DPTTZ = 2, 5-di (pyridine-4-yl) thiazolo [5, 4-d] thiazole, 5-AIP = 5-Aminoisophthalic acid), by a reflux method, which can be considered as a fast and simple process. The morphology and structure of the synthesized IUST-1 were determined by using FE-SEM (Field Emission Scanning Electron Microscopy), EDX (Energy Dispersive Analysis of X-ray), Mapping (Elemental Mapping), CHNS (Elemental analysis), XRD (X-Ray Diffraction), FT-IR (Fourier Transform Infrared), and TGA (Thermo Gravimetric Analysis). The epoxidation of cyclooctene was investigated using the activity of catalytic IUST-1. The results showed that in the presence of tert-butyl hydroperoxide and CCl4 in a 1:2 alkene/oxidant ratio, a high epoxide yield (99.8%) was obtained. In addition, IUST-1 can be easily separated by simple filtration and recycled five times successfully with a slight decrease in activity. This compound has some advantages such as high yield, short reaction time, and ease of reuse, which make it a suitable heterogeneous catalyst for the epoxidation of cyclooctene.
Collapse
Affiliation(s)
- Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Akram Karbalaee Hosseini
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| | - Mehdi Abroudi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| |
Collapse
|
12
|
Buazar F, Sayahi MH, Zarei Sefiddashti A. Marine carrageenan‐based NiO nanocatalyst in solvent‐free synthesis of polyhydroquinoline derivatives. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 01/06/2025]
Abstract
This study presents the preparation of nickel oxide nanoparticles (NiO NPs) in the presence of marine seaweed kappa‐carrageenan (κ‐carrageenan) polysaccharide as a green stabilizer and coating agent under optimal conditions. Thermal gravimetric analyzer (TGA) and Fourier transform infrared (FTIR) results revealed thermal stability and the presence of functional groups of κ‐carrageenan‐coated NiO (NiO@κ‐Car) NPs. The color change of the solution from green to black and advent peak at 320 nm primitively confirmed the formation of NiO NPs. Further, transmission electron microscopy (TEM) images of NiO@κ‐Car demonstrate rather irregular spherical and cubic morphology, showing an average size of 18 ± 1.5 nm. Further, X‐ray diffraction (XRD) analysis confirms that NiO NPs appear as cubic crystal structures with a crystallite size of 23.7 nm. According to the turnover number (TON) and turnover frequency (TOF) results, green NiO@κ‐Car exhibits superior catalytic efficiency in one‐pot multicomponent synthesis of polyhydroquinoline derivatives under free‐solvent conditions. Hydrogen‐1 (1H) and carbon‐13 (13C) nuclear magnetic resonance (NMR) spectra indicated the successful synthesis of various organic products. The key advantages of the proposed efficient synthetic protocol include reusability of the catalyst (four runs), simple workout, high yield of the products, environmental sustainability, and solvent‐free reaction condition. A possible mechanism was also suggested, indicating the role of NiO@κ‐Car as a proficient heterogeneous nanocatalyst in the reaction.
Collapse
Affiliation(s)
- Foad Buazar
- Department of Marine Chemistry Khorramshahr University of Marine Science and Technology Khorramshahr Iran
| | | | | |
Collapse
|
13
|
Yaghubzadeh M, Alavinia S, Ghorbani-Vaghei R. A sustainable protocol for selective alcohols oxidation using a novel iron-based metal organic framework (MOF-BASU1). RSC Adv 2023; 13:24639-24648. [PMID: 37601596 PMCID: PMC10433720 DOI: 10.1039/d3ra03058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
The selective oxidation of active and inactive alcohol substrates is a highly versatile conversion that poses a challenge in controlling the functionality and adjustments on MOFs. On the other hand, it offers an attractive opportunity to expand their applications in designing the next generation of catalysts with improved performance. Herein, a novel iron-based MOF containing sulfonamide (MOF-BASU1) has been fabricated by the reaction of 1,3-benzene disulfonylchloride linker and FeCl3·6H2O. Based on the results, the active surface area of the synthesized MOF is large, which highlights its unique catalytic activity. Optimum conditions were reached after 0.5-2 h, with 15 mg loading of the synthesized MOF under optimal conditions. Furthermore, the turnover frequency was 18-77.6 h-1, which is comparable to values previously reported for this process. Overall, the high catalytic activity observed for MOF-BASU1 might be because of the obtained high surface area and the Lewis acidic Fe nodes. Furthermore, the MOF-BASU1 revealed a remarkable chemoselectivity for aldehydes in the presence of aliphatic alcohols. Overall, the high product yields, facile recovery of nanocatalysts, short reaction times, and broad substrate range make this process environmentally friendly, practical, and economically justified.
Collapse
Affiliation(s)
- Mahtab Yaghubzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98-8138380647
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98-8138380647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98-8138380647
| |
Collapse
|
14
|
Heidari S, Alavinia S, Ghorbani-Vaghei R. Green synthesis of thiourea derivatives from nitrobenzenes using Ni nanoparticles immobilized on triazine-aminopyridine-modified MIL-101(Cr) MOF. Sci Rep 2023; 13:12964. [PMID: 37563182 PMCID: PMC10415257 DOI: 10.1038/s41598-023-40190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Nanohybrid metal-organic frameworks (MOF) have recently been considered next-generation catalysts regarding their unique features like large surface-to-volume ratio, tailorable geometry, uniform pore sizes, and homogeneous distribution of active sites. In this report, we address the triazine-aminopyridine-modified 3D Cr-centred MOF MIL-101(Cr)-NH2 following a post-synthetic modification approach. The excellent chelating ability of triazine-aminopyridine was applied to immobilize Ni ions over the host matrix MOF. The as-synthesized material was physicochemically characterized using various analytical techniques like FT-IR, electron microscopy, EDS, elemental mapping, XRD, and ICP-OES. Subsequently, the material has been catalytically employed in synthesizing new thiourea derivatives by reacting to nitrobenzene derivatives and phenyl isocyanate. The catalyst was isolated by centrifugation and recycled in 6 consecutive runs without momentous loss of its reactivity.
Collapse
Affiliation(s)
- Sara Heidari
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran.
| |
Collapse
|
15
|
Shakib P, Dekamin MG, Valiey E, Karami S, Dohendou M. Ultrasound-Promoted preparation and application of novel bifunctional core/shell Fe 3O 4@SiO 2@PTS-APG as a robust catalyst in the expeditious synthesis of Hantzsch esters. Sci Rep 2023; 13:8016. [PMID: 37198267 DOI: 10.1038/s41598-023-33990-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
In this work, D-(-)-α-phenylglycine (APG)-functionalized magnetic nanocatalyst (Fe3O4@SiO2@PTS-APG) was designed and successfully prepared in order to implement the principles of green chemistry for the synthesis of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives under ultrasonic irradiation in EtOH. After preparing of the nanocatalyst, its structure was confirmed by different spectroscopic methods or techniques including Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and thermal gravimetric analysis (TGA). The performance of Fe3O4@SiO2@PTS-APG nanomaterial, as a heterogeneous catalyst for the Hantzsch condensation, was examined under ultrasonic irradiation and various conditions. The yield of products was controlled under various conditions to reach more than 84% in just 10 min, which indicates the high performance of the nanocatalyst along with the synergistic effect of ultrasonic irradiation. The structure of the products was identified by melting point as well as FTIR and 1H NMR spectroscopic methods. The Fe3O4@SiO2@PTS-APG nanocatalyst is easily prepared from commercially available, lower toxic and thermally stable precursors through a cost-effective, highly efficient and environmentally friendly procedure. The advantages of this method include simplicity of the operation, reaction under mild conditions, the use of an environmentally benign irradiation source, obtaining pure products with high efficiency in short reaction times without using a tedious path, which all of them address important green chemistry principles. Finally, a reasonable mechanism is proposed for the preparation of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives in the presence of Fe3O4@SiO2@PTS-APG bifunctional magnetic nanocatalyst.
Collapse
Affiliation(s)
- Peyman Shakib
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Shahriar Karami
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Dohendou
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
16
|
Koosha S, Alavinia S, Ghorbani-Vaghei R. CuI nanoparticle-immobilized on a hybrid material composed of IRMOF-3 and a sulfonamide-based porous organic polymer as an efficient nanocatalyst for one-pot synthesis of 2,4-diaryl-quinolines. RSC Adv 2023; 13:11480-11494. [PMID: 37063714 PMCID: PMC10091365 DOI: 10.1039/d3ra01164j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
As a significant class of synthetic and natural products with multiple biological activities, quinolines are used in medical and electronic devices. In this study, a novel method is presented to synthesize 2,4-diarylquinoline derivatives via a simple one-pot multicomponent reaction between phenylacetylenes, aniline derivatives, and aldehydes in CH3CN using IRMOF-3/PSTA/Cu. Notably, polymer/MOF is stabilized through a reaction between a sulfonamide-triazine-based porous organic polymer [poly (sulfonamide-triazine)](PSTA) and an amino-functionalized zinc metal-organic framework (IRMOF-3). Next, the prepared nanocomposites (IRMOF-3/PSTA) are modified using copper iodide nanoparticles (CuI NPs). Overall, the high product yields, facile recovery of nanocatalysts, short reaction times, and broad substrate range make this process environmentally friendly, practical, and economically justified.
Collapse
Affiliation(s)
- Samaneh Koosha
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamadan Iran +98-8138380709 +98-8138380709
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamadan Iran +98-8138380709 +98-8138380709
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamadan Iran +98-8138380709 +98-8138380709
| |
Collapse
|
17
|
Sarkar A, Kundu T, Natarajan S. Sequential Assembly and Stabilization of Cu 6S 6 Octahedral Clusters in NaCl-, NiAs-, and CdI 2-Related Structures and Their Utility toward Thermochromism and Multicomponent Hantzsch Reaction. Inorg Chem 2023; 62:4417-4434. [PMID: 36883826 DOI: 10.1021/acs.inorgchem.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Seven new inorganic-organic coordination polymer compounds have been synthesized and their structures are determined by single-crystal structure determination. The compounds were prepared by the sequential assembly of a [Cu6(mna)6]6- moiety in the presence of a Mn salt and a secondary amine ligand. Of the seven compounds, [{Cu6(mna)6}Mn3(H2O)(H2O)1.5]·5.5H2O (I), [{Cu6(mna)6}Mn3(H2O)(Im)1.5]·3.5H2O (Ia), [{Cu6(mna)6}{Mn(BPY)(H2O)}2{Mn(H2O)4}]·2H2O (III), and [{Cu6(mna)6}{Mn(BPE)0.5(H2O)2}2{Mn(BPE)(H2O)2}] (IV) have a three-dimensional structure, whereas [{Cu6(mna)4.5(Hmna)1.5}{Mn(BPA)(H2O)2}{Mn(H2O)}]{Mn0.25(H2O)3}·7H2O (II), [{Cu6(mna)6}{Mn(4-BPDB)0.5H2O}{Mn(H2O)2}].{Mn(H2O)6}·6H2O (V), and [{Cu6(mna)4(Hmna)2}·{Mn(H2O)3}2]·(4-APY)2·6H2O (VI) have a two-dimensional structure. Some of the prepared compounds exhibit structures that closely resemble the classical inorganic structures, such as NaCl (Ia, III), NiAs (I), and CdI2 (IV and VI). The stabilization of such simple structures from the assembly of octahedral Cu6S6 clusters and different Mn species and aromatic nitrogen-containing ligands suggests the subtle interplay between the constituent reactants. The compounds were examined for the multicomponent Hantzsch reaction, which gave the product in good yields. The compounds, II and VI, on heating to 70 °C change color reversibly from pale yellow to deep red, which suggests the possible use of these compounds as thermochromic materials. The present study suggests that the Cu6S6 octahedral clusters can be assembled into structures that resemble classical inorganic structures.
Collapse
Affiliation(s)
- Anupam Sarkar
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Tanaya Kundu
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Siahkamari S, Daneshfar A. Synthesis of a new magnetic metal organic framework based on nickel for extraction of carvacrol and thymol in thymus and savory samples and analyzed with gas chromatography. RSC Adv 2023; 13:7664-7672. [PMID: 36908535 PMCID: PMC9993065 DOI: 10.1039/d2ra07367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
The present research aims at reporting a new sorbent, a magnetic nano scale metal-organic framework (MOF), based on nickel acetate and 6-phenyl-1,3,5-triazine-2,4-diamine. The prepared sorbent was used to extract carvacrol and thymol using an ultrasonic-assisted dispersive micro solid phase extraction (UA-DμSPE) method. The structure of the metal organic framework was studied by applying scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectrometry (EDS), and vibrating sample magnetometer (VSM). The effects of various parameters such as ionic strength of sample solution, amount of sorbent (mg), volume of eluent solvent (μL), vortex and ultrasonic times (min) were optimized. Under optimal conditions, the analytes resulted in determination coefficients (R 2) of 0.9985 and 0.9967 in the concentration range 0.01-2 μg mL-1, and in limits of detection of 0.0025 and 0.0028 μg mL-1. Significantly, this method can be successfully applied in order to determine the target analytes in spiked real samples. Notably, the relative mean recoveries range from 94.5 to 105.7%.
Collapse
Affiliation(s)
- Somaye Siahkamari
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Ali Daneshfar
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran .,Department of Chemistry, Faculty of Science, Lorestan University Khoramabad Iran
| |
Collapse
|
19
|
Kouhdareh J, Keypour H, Alavinia S, Maryamabadi A. Immobilization of Ag and Pd over a novel amide based covalent organic framework (COF-BASU2) as a heterogeneous reusable catalyst to reduce nitroarenes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Nikseresht A, Bagherinia R, Mohammadi M, Mehravar R. Phosphomolybdic acid hydrate encapsulated in MIL-53 (Fe): a novel heterogeneous heteropoly acid catalyst for ultrasound-assisted regioselective nitration of phenols. RSC Adv 2022; 13:674-687. [PMID: 36605662 PMCID: PMC9783539 DOI: 10.1039/d2ra07077d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, a heterogeneous catalyst, PMA@MIL-53 (Fe) (MIL ⇒ Matériaux de l'Institut Lavoisier), has been used to replace the usual mineral acids such as sulfuric acid. A wide variety of nitration methods require the use of a mixture of acids such as concentrated nitric acid and sulfuric acid, which result in producing a large amount of acidic waste. During recent years, the use of the heterogeneous system for the nitration of aromatic compounds has been highly considered and used by chemists due to some specific advantages, i.e. easy separation of the product from the reaction mixture, the possibility of recycling and reusing the catalyst, etc. Herein, the catalyst was synthesized using a metal-organic framework and a heteropoly phosphomolybdic acid. The PMA@MIL-53 (Fe) was prepared using a similar method of MIL-53 (Fe) synthesis. Afterwards, FeCl3·6H2O and 1,4-benzene dicarboxylic acid (BDC) in a dimethylformamide solution were placed in an ultrasound bath and, then, HPA (heteropoly acid) was added to the reaction mixture. The PMA (phosphomolybdic acid) encapsulation in MIL-53 (Fe) was confirmed using various analysis. Under optimal conditions, the catalytic activity of PMA@MIL-53 (Fe) was evaluated in nitration of phenol under ultrasonic waves. Besides, the ratio of the two products of ortho and para was obtained using GC. Optimum conditions were reached after 15 minutes, in such a way that the loaded PMA was 0.02 g under optimal conditions, the efficiencies of ortho-nitrophenol and para nitrophenol were 54.98 and 45.01, respectively.
Collapse
Affiliation(s)
- Ahmad Nikseresht
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Rasoul Bagherinia
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | - Reza Mehravar
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| |
Collapse
|
21
|
Ghiai R, Alavinia S, Ghorbani-Vaghei R, Gharakhani A. Ni(ii) immobilized on poly(guanidine-triazine-sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines. RSC Adv 2022; 12:34425-34437. [PMID: 36545623 PMCID: PMC9709786 DOI: 10.1039/d2ra06196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) are used as hard templates. Using this method allowed the facile and fast removal of the template and mesopores formation following the Fe3O4 MNPs. Different techniques were performed to characterize the structure of the polymer. Based on the obtained results, the obtained mesoporous polymeric network was multi-layered and consisted of repeating units of sulfonamide, triazine, and guanidine as a novel heterogeneous multifunctional support. Afterward, the new nickel organometallic complex was supported on its inner surface using the porous poly sulfonamide triazine guanidine (PGTSA/Ni). In this process, the obtained PGTSA/Ni nanocomposite was used as a heterogeneous catalyst in the synthesis of imines from amines. Since this reaction has an acceptorless dehydrogenation pathway, the hydrogen gas is released as its by-product. The synthesized nanocatalyst was structurally confirmed using different characterization modalities, including FT-IR, SEM, XRD, EDX, TEM, elemental mapping, ICP-AES, BET, and TGA. In addition, all products were obtained in high turnover frequency (TOF) and turnover number (TON). The corresponding results revealed the high selectivity and activity of the prepared catalyst through these coupling reactions. Overall, the synthesized nanocatalyst is useable for eight cycles with no considerable catalytic efficiency loss.
Collapse
Affiliation(s)
- Ramin Ghiai
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| | - Alireza Gharakhani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| |
Collapse
|
22
|
Izadkhah V, Ghorbani-Vaghei R, Alavinia S, Asadabadi S, Emami N, Jamehbozorgi S. Fabrication of Zirconium Metal-Organic-framework/Poly Triazine-phosphanimine Nanocomposite for Dye Adsorption from Contaminated Water: Isotherms and Kinetics Models. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
23
|
Valiey E, Dekamin MG. Design and characterization of an urea-bridged PMO supporting Cu(II) nanoparticles as highly efficient heterogeneous catalyst for synthesis of tetrazole derivatives. Sci Rep 2022; 12:18139. [PMID: 36307538 PMCID: PMC9616949 DOI: 10.1038/s41598-022-22905-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/20/2022] [Indexed: 12/30/2022] Open
Abstract
In this work, a new periodic mesoporous organosilica with urea-bridges produced by the reaction of (3-aminopropyl)triethoxysilane and toluene-2,4-diisocyanate (APS-TDU-PMO) is introduced. The obtained APS-TDU-PMO was found to be an appropriate support for loading of Cu(II) nanoparticles to afford supramolecular Cu@APS-TDU-PMO nanocomposite. Uniformity and mesoporosity of both synthesized nanomaterials including APS-TDU-PMO and Cu@APS-TDU-PMO were proved by different spectroscopic, microscopic or analytical techniques including FTIR, EDX, XRD, FESEM, TEM, BET, TGA and DTA. Furthermore, the prepared Cu@APS-TDU-PMO nanomaterial was also used, as a heterogeneous and recyclable catalyst, for the synthesis of tetrazole derivatives through cascade condensation, concerted cycloaddition and tautomerization reactions. Indeed, the main advantages of this Cu@APS-TDU-PMO is its simple preparation and high catalytic activity as well as proper surface area which enable it to work under solvent-free conditions. Also, the introduced Cu@APS-TDU-PMO heterogeneous catalyst showed good stability and reusability for six consecutive runs to address more green chemistry principles.
Collapse
Affiliation(s)
- Ehsan Valiey
- grid.411748.f0000 0001 0387 0587Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Mohammad G. Dekamin
- grid.411748.f0000 0001 0387 0587Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| |
Collapse
|
24
|
Ghiai R, Alavinia S, Ghorbani-Vaghei R. Chlorosulfonic acid coated on porous organic polymer as a bifunctional catalyst for the one-pot three-component synthesis of 1,8-naphthyridines. RSC Adv 2022; 12:27723-27735. [PMID: 36320279 PMCID: PMC9516894 DOI: 10.1039/d2ra05070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of six-membered oxygen- and nitrogen-containing heterocycles has been regarded as the most fundamental issue in organic chemistry and the chemical industry because these heterocycles are used in producing high-value products. In this study, an efficient, economic, sustainable, and green protocol for their multicomponent synthesis has been developed. The one-pot direct Knoevenagel condensation-Michael addition-cyclization sequences for the transformation of aromatic aldehydes, malononitrile, and 2-aminopyridine generate the corresponding 1,8-naphthyridines over a novel mesoporous bifunctional organocatalyst supported cholorosulfonic acid [poly(triazine-benzene sulfonamide)-SO3H (PTBSA-SO3H)] under ambient conditions. The catalyst was used for the formation of 1,8-naphthyridine derivatives for six runs. The current strategy provided a wider substrate range, and short reaction times.
Collapse
Affiliation(s)
- Ramin Ghiai
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98(81)38380647
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98(81)38380647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98(81)38380647
| |
Collapse
|
25
|
Larina V, Babich O, Zhikhreva A, Ivanova S, Chupakhin E. The use of metal-organic frameworks as heterogeneous catalysts. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This article presents an overview of some of the available research studies of MOFs as catalysts. Catalytic studies of magnetic iron oxide nanoparticles with modified surfaces, MOFs with precious metals such as palladium, platinum, and silver, with zirconium, hafnium, copper, alkaline earth metals, lanthanides are generalized. The studies of the catalytic activity of micro- and mesoporous MOF structures are described.
Collapse
Affiliation(s)
- Viktoria Larina
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| | - Olga Babich
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| | - Anastasia Zhikhreva
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory , Kemerovo State University , Krasnaya Street 6 , Kemerovo , 650043 , Russia
- Department of General Mathematics and Informatics , Kemerovo State University , Krasnaya Street, 6 , Kemerovo 650043 , Russia
| | - Eugene Chupakhin
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| |
Collapse
|
26
|
Cu@MTPOF as an Efficient Catalyst for the C–S Coupling of 2-Mercaptobenzimidazole with Aryl Halides and 2-Halobenzoic Acids. Catal Letters 2022. [DOI: 10.1007/s10562-022-04092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Khosravi F, Gholinejad M, Sansano JM, Luque R. Bimetallic Fe‐Cu Metal Organic Frameworks for room temperature catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faezeh Khosravi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Jose M. Sansano
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universidad de Alicante Alicante Spain
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C‐3) Córdoba Spain
- People’s Friendship University of Russia (RUDN University) Moscow Russian Federation
| |
Collapse
|
28
|
Esmaili S, Khazaei A, Ghorbani-Choghamarani A, Mohammadi M. Silica sulfuric acid coated on SnFe 2O 4 MNPs: synthesis, characterization and catalytic applications in the synthesis of polyhydroquinolines. RSC Adv 2022; 12:14397-14410. [PMID: 35702251 PMCID: PMC9097862 DOI: 10.1039/d2ra01202b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
An efficient and heterogeneous novel magnetic solid sulfuric acid, immobilized on silica functionalized SnFe2O4, was successfully synthesized, characterized, and employed as a novel recoverable nanocatalyst for the synthesis of biologically active polyhydroquinoline derivatives. The SnFe2O4@SiO2-SO3H was easily synthesized and confirmed using various spectroscopic techniques, including FT-IR, XRD, EDX, Map, TGA, SEM and TEM analyses. The catalytic behavior of the resulting catalyst system was investigated in the Hantzsch synthesis of polyhydroquinoline derivatives. The desired products were obtained with high conversions and excellent reusability.
Collapse
Affiliation(s)
- Soheila Esmaili
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | | | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| |
Collapse
|
29
|
Mohammadi M, Ghorbani-Choghamarani A. Complexation of guanidino containing l-arginine with nickel on silica-modified Hercynite MNPs: a novel catalyst for the Hantzsch synthesis of polyhydroquinolines and 2,3-Dihydroquinazolin-4(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04706-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Koolivand M, Nikoorazm M, Ghorbani‐Choghamaran A, Mohammadi M. A novel cubic Zn‐citric acid‐based MOF as a highly efficient and reusable catalyst for the synthesis of pyranopyrazoles and 5‐substituted 1H‐tetrazoles. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mostafa Koolivand
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | | | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| |
Collapse
|