1
|
Huang T, Jiang H, Tang G, Li J, Huang X, Huang Z, Zhang H. Efficacy and safety of hydroxyurea therapy on patients with β-thalassemia: a systematic review and meta-analysis. Front Med (Lausanne) 2025; 11:1480831. [PMID: 39882530 PMCID: PMC11774989 DOI: 10.3389/fmed.2024.1480831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Objective Our aim is to review the safety and efficacy of hydroxyurea (HU) on β-thalassemia patients. Methods Studies that evaluated the safety and efficacy of HU on β-thalassemia patients were searched in Pub-Med, Cochrane Databases, Web of Science, China-Biology-Medicine, CNKI, Embase, VIP, and WanFang data. The proportions of response rate (RR) (50% fall in transfusion need in transfusion-dependent β-thalassemia patients, or 1 g/dL elevate in hemoglobin (Hb) levels in transfusion-independent β-thalassemia patients) and good RR (transfusion-free in transfusion-dependent β-thalassemia patients or 2 g/dL elevate in Hb levels in transfusion-independent β-thalassemia patients) were utilized to evaluate the effect size (ES). The secondary outcomes were the adverse events incidence rates of HU in β-thalassemia patients. Results Two randomized controlled trials (RCTs) and 25 single-armed observational studies with typically 1,748 individuals were involved in our analysis. All 27 clinical trials were reported with fair quality. HU, in transfusion-dependent β-thalassemia patients, was related to a significant decrease in transfusion requirements [a pooled RR of 0.37 and a pooled good RR of 0.65 (95% CI, 0.53-0.76)]; in transfusion-independent β-thalassemia patients, it was correlated to an excellent raise in Hb levels [a pooled RR of 0.20 (95% CI, 0.08-0.35) and a pooled good RR of 0.53 (95% CI, 0.41-0.65)]. Neutropenia and leucopenia were the most prevalent adverse events in β-thalassemia patients treated with HU, while the incidence rates of other side effects were relatively lower. Conclusion Our findings demonstrated that β-thalassemia patients tolerated and responded well to HU. Due to the control arms absence in the involved studies, more double-masked RCTs are essential for proving the safety and efficacy of HU in β-thalassemia patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenguang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongliang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Vadolas J, Nualkaew T, Voon HPJ, Vilcassim S, Grigoriadis G. Interplay between α-thalassemia and β-hemoglobinopathies: Translating genotype-phenotype relationships into therapies. Hemasphere 2024; 8:e78. [PMID: 38752170 PMCID: PMC11094674 DOI: 10.1002/hem3.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
α-Thalassemia represents one of the most important genetic modulators of β-hemoglobinopathies. During this last decade, the ongoing interest in characterizing genotype-phenotype relationships has yielded incredible insights into α-globin gene regulation and its impact on β-hemoglobinopathies. In this review, we provide a holistic update on α-globin gene expression stemming from DNA to RNA to protein, as well as epigenetic mechanisms that can impact gene expression and potentially influence phenotypic outcomes. Here, we highlight defined α-globin targeted strategies and rationalize the use of distinct molecular targets based on the restoration of balanced α/β-like globin chain synthesis. Considering the therapies that either increase β-globin synthesis or reactivate γ-globin gene expression, the modulation of α-globin chains as a disease modifier for β-hemoglobinopathies still remains largely uncharted in clinical studies.
Collapse
Affiliation(s)
- Jim Vadolas
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tiwaporn Nualkaew
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Present address:
Department of Medical Technology, School of Allied Health SciencesWalailak UniversityNakhon Si ThammaratThailand
| | - Hsiao P. J. Voon
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Shahla Vilcassim
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- School of Clinical Sciences at Monash HealthMonash UniversityClaytonAustralia
| | - George Grigoriadis
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- School of Clinical Sciences at Monash HealthMonash UniversityClaytonAustralia
| |
Collapse
|
3
|
Gambari R, Waziri AD, Goonasekera H, Peprah E. Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications. Int J Mol Sci 2024; 25:4263. [PMID: 38673849 PMCID: PMC11050010 DOI: 10.3390/ijms25084263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 40124 Ferrara, Italy
| | - Aliyu Dahiru Waziri
- Department of Hematology and Blood Transfusion, Ahmadu Bello University Teaching Hospital Zaria, Kaduna 810001, Nigeria;
| | - Hemali Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo P.O. Box 271, Sri Lanka;
| | - Emmanuel Peprah
- Implementing Sustainable Evidence-Based Interventions through Engagement (ISEE) Lab, Department of Global and Environmental Health, School of Global Public Health, New York University, New York, NY 10003, USA;
| |
Collapse
|
4
|
Premawardhena A, Perera C, Wijethilaka MN, Wanasinghe SK, Rajakaruna RHMG, Samarasinghe RANKK, Williams S, Mettananda S. Efficacy and safety of deferoxamine, deferasirox and deferiprone triple iron chelator combination therapy for transfusion-dependent β-thalassaemia with very high iron overload: a protocol for randomised controlled clinical trial. BMJ Open 2024; 14:e077342. [PMID: 38331857 PMCID: PMC10860110 DOI: 10.1136/bmjopen-2023-077342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Despite the improvement in medical management, many patients with transfusion-dependent β-thalassaemia die prematurely due to transfusion-related iron overload. As per the current guidelines, the optimal chelation of iron cannot be achieved in many patients, even with two iron chelators at their maximum therapeutic doses. Here, we evaluate the efficacy and safety of triple combination treatment with deferoxamine, deferasirox and deferiprone over dual combination of deferoxamine and deferasirox on iron chelation in patients with transfusion-dependent β-thalassaemia with very high iron overload. METHODS AND ANALYSIS This is a single-centre, open-label, randomised, controlled clinical trial conducted at the Adult and Adolescent Thalassaemia Centre of Colombo North Teaching Hospital, Ragama, Sri Lanka. Patients with haematologically and genetically confirmed transfusion-dependent β-thalassaemia are enrolled and randomised into intervention or control groups. The intervention arm will receive a combination of oral deferasirox, oral deferiprone and subcutaneous deferoxamine for 6 months. The control arm will receive the combination of oral deferasirox and subcutaneous deferoxamine for 6 months. Reduction in iron overload, as measured by a reduction in the serum ferritin after completion of the treatment, will be the primary outcome measure. Reduction in liver and cardiac iron content as measured by T2* MRI and the side effect profile of trial medications are the secondary outcome measures. ETHICS AND DISSEMINATION Ethical approval for the study has been obtained from the Ethics Committee of the Faculty of Medicine, University of Kelaniya (Ref. P/06/02/2023). The trial results will be disseminated in scientific publications in reputed journals. TRIAL REGISTRATION NUMBER The trial is registered in the Sri Lanka Clinical Trials Registry (Ref: SLCTR/2023/010).
Collapse
Affiliation(s)
- Anuja Premawardhena
- Colombo North Teaching Hospital, Ragama, Sri Lanka
- Department of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Chamodi Perera
- Department of Paediatrics, University of Kelaniya, Kelaniya, Sri Lanka
| | | | | | | | | | - Senani Williams
- Department of Pathology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Sachith Mettananda
- Colombo North Teaching Hospital, Ragama, Sri Lanka
- Department of Paediatrics, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
5
|
Zuccato C, Cosenza LC, Tupini C, Finotti A, Sacchetti G, Simoni D, Gambari R, Lampronti I. New Synthetic Isoxazole Derivatives Acting as Potent Inducers of Fetal Hemoglobin in Erythroid Precursor Cells Isolated from β-Thalassemic Patients. Molecules 2023; 29:8. [PMID: 38202591 PMCID: PMC10779815 DOI: 10.3390/molecules29010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Induction of fetal hemoglobin (HbF) is highly beneficial for patients carrying β-thalassemia, and novel HbF inducers are highly needed. Here, we describe a new class of promising HbF inducers characterized by an isoxazole chemical skeleton and obtained through modification of two natural molecules, geldanamycin and radicicol. After preliminary biological assays based on benzidine staining and RT-qPCR conducted on human erythroleukemic K562 cells, we employed erythroid precursors cells (ErPCs) isolated from β-thalassemic patients. ErPCs weretreated with appropriate concentrations of isoxazole derivatives. The accumulation of globin mRNAs was studied by RT-qPCR, and hemoglobin production by HPLC. We demonstrated the high efficacy of isozaxoles in inducing HbF. Most of these derivatives displayed an activity similar to that observed using known HbF inducers, such as hydroxyurea (HU) or rapamycin; some of the analyzed compounds were able to induce HbF with more efficiency than HU. All the compounds were active in reducing the excess of free α-globin in treated ErPCs. All the compounds displayed a lack of genotoxicity. These novel isoxazoles deserve further pre-clinical study aimed at verifying whether they are suitable for the development of therapeutic protocols for β-thalassemia.
Collapse
Affiliation(s)
- Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Chiara Tupini
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Daniele Simoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara University, 44121 Ferrara, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Metcalf RA, Cohn CS, Bakhtary S, Gniadek T, Gupta G, Harm S, Haspel RL, Hess AS, Jacobson J, Lokhandwala PM, Murphy C, Poston JN, Prochaska MT, Raval JS, Saifee NH, Salazar E, Shan H, Zantek ND, Pagano MB. Current advances in 2022: A critical review of selected topics by the Association for the Advancement of Blood and Biotherapies (AABB) Clinical Transfusion Medicine Committee. Transfusion 2023; 63:1590-1600. [PMID: 37403547 DOI: 10.1111/trf.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND The Association for the Advancement of Blood and Biotherapies Clinical Transfusion Medicine Committee (CTMC) composes a summary of new and important advances in transfusion medicine (TM) on an annual basis. Since 2018, this has been assembled into a manuscript and published in Transfusion. STUDY DESIGN AND METHODS CTMC members selected original manuscripts relevant to TM that were published electronically and/or in print during calendar year 2022. Papers were selected based on perceived importance and/or originality. References for selected papers were made available to CTMC members to provide feedback. Members were also encouraged to identify papers that may have been omitted initially. They then worked in groups of two to three to write a summary for each new publication within their broader topic. Each topic summary was then reviewed and edited by two separate committee members. The final manuscript was assembled by the first and senior authors. While this review is extensive, it is not a systematic review and some publications considered important by readers may have been excluded. RESULTS For calendar year 2022, summaries of key publications were assembled for the following broader topics within TM: blood component therapy; infectious diseases, blood donor testing, and collections; patient blood management; immunohematology and genomics; hemostasis; hemoglobinopathies; apheresis and cell therapy; pediatrics; and health care disparities, diversity, equity, and inclusion. DISCUSSION This Committee Report reviews and summarizes important publications and advances in TM published during calendar year 2022, and maybe a useful educational tool.
Collapse
Affiliation(s)
- Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sara Bakhtary
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Gaurav Gupta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah Harm
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard L Haspel
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron S Hess
- Departments of Anesthesiology and Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jessica Jacobson
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Parvez M Lokhandwala
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Colin Murphy
- TriCore Reference Laboratories, Albuquerque, New Mexico, USA
| | - Jacqueline N Poston
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Micah T Prochaska
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eric Salazar
- Department of Pathology, UT Health San Antonio, San Antonio, Texas, USA
| | - Hua Shan
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Nicole D Zantek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Monica B Pagano
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Finotti A, Gambari R. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: treatment with HbF inducers and CRISPR-Cas9 based genome editing. Front Genome Ed 2023; 5:1204536. [PMID: 37529398 PMCID: PMC10387548 DOI: 10.3389/fgeed.2023.1204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Genome editing (GE) is one of the most efficient and useful molecular approaches to correct the effects of gene mutations in hereditary monogenetic diseases, including β-thalassemia. CRISPR-Cas9 gene editing has been proposed for effective correction of the β-thalassemia mutation, obtaining high-level "de novo" production of adult hemoglobin (HbA). In addition to the correction of the primary gene mutations causing β-thalassemia, several reports demonstrate that gene editing can be employed to increase fetal hemoglobin (HbF), obtaining important clinical benefits in treated β-thalassemia patients. This important objective can be achieved through CRISPR-Cas9 disruption of genes encoding transcriptional repressors of γ-globin gene expression (such as BCL11A, SOX6, KLF-1) or their binding sites in the HBG promoter, mimicking non-deletional and deletional HPFH mutations. These two approaches (β-globin gene correction and genome editing of the genes encoding repressors of γ-globin gene transcription) can be, at least in theory, combined. However, since multiplex CRISPR-Cas9 gene editing is associated with documented evidence concerning possible genotoxicity, this review is focused on the possibility to combine pharmacologically-mediated HbF induction protocols with the "de novo" production of HbA using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Acharya B, Mishra DP, Barik B, Mohapatra RK, Sarangi AK. Recent progress in the treatment of sickle cell disease: an up-to-date review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:38. [DOI: 10.1186/s43088-023-00373-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/20/2023] [Indexed: 02/12/2025] Open
Abstract
Abstract
Background
Sickle cell disease is a fatal systemic condition characterized by acute painful episodes, persistent anemia, ongoing organ damage, organ infarction, and a markedly shorter average lifetime. It first appeared in the tropics' malarial zones, where carriers benefit from an evolutionary advantage by being shielded from malaria death.
Due to demographic shifts, this crisis now affects people all over the world. In higher-income areas, such as vast swaths of Europe and North and South America, more children are born with the syndrome.
Main body
Over the last 10 years, a clearer knowledge of the change from fetal to adult hemoglobin has evolved. Further investigation into chimerism, genomics, mixed gene editing, and therapeutic reactivation of fetal hemoglobin has produced very promising findings. Between 2017 and 2019, three innovative medications for sickle cell disease were approved by the FDA thanks to previous advances, while many more treatments are now under development.
Short conclusion
To improve patient outcomes, various innovative medications that were created in the late 1990s and utilized to treat sickle cell disease are examined in this study. In our appraisal, we'll also focus on the most important developments of the decade.
Collapse
|
9
|
Hatamleh MI, Chenna VSH, Contractor H, Krishna Mohan GV, Tirumandyam G, Dammas N, Khan MW, Hirani S. Efficacy of Hydroxyurea in Transfusion-Dependent Major β-Thalassemia Patients: A Meta-Analysis. Cureus 2023; 15:e38135. [PMID: 37252463 PMCID: PMC10213992 DOI: 10.7759/cureus.38135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The present meta-analysis was conducted to determine the efficacy of hydroxyurea in patients with transfusion dependent major β-thalassemia. The present meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines. A systematic search was carried out to evaluate the efficacy of hydroxyurea in patients with transfusion-dependent B-thalassaemia using electronic databases, including MEDLINE, Cochrane Central Register of Controlled Trials, and EMBASE. The keywords used to search for relevant studies included "hydroxyurea", "thalassemia", "transfusion-dependent", and "efficacy". Outcomes assessed in the present meta-analysis included transfusion in one year and intervals between transfusions (in days). Other outcomes assessed in the present meta-analysis were fetal hemoglobin (%), hemoglobin (%), and ferritin levels (ng/dl). Total of five studies were included in the analysis enrolling 294 patients with major B-thalassemia. The pooled analysis reported that the mean interval between transfusions was significantly higher in patients receiving hydroxyurea compared to those not receiving hydroxyurea (mean deviation {MD}: 10.07, 95% CI: 2.16, 17.99). Hemoglobin was significantly higher in patients receiving hydroxyurea compared to its counterparts (MD: 1.71, 95% CI: 0.84, 2.57). Patients receiving hydroxyurea had significantly lower ferritin levels compared to those not receiving hydroxyurea (MD: -299.65, 95% CI: -518.35, -80.96). These findings suggest that hydroxyurea may be a promising and cost-effective alternative to blood transfusions and iron chelation therapies for beta-thalassemia patients. However, the authors noted that further randomized controlled trials are needed to validate these findings and to determine the optimal dosages and treatment regimens for hydroxyurea in this patient population.
Collapse
Affiliation(s)
| | | | - Hazel Contractor
- Medical Education, Smt. Nathiba Hargovandas Lakhmichand (NHL) Municipal Medical College, Ahmedabad, IND
| | | | - Gayathri Tirumandyam
- Internal Medicine, Siddhartha Medical College, Dr. NTR University of Health Sciences, Vijaywada, IND
| | - Nada Dammas
- Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | | | | |
Collapse
|
10
|
Piga A, Longo F, Gamberini MR, Voskaridou E, Ricchi P, Caruso V, Pietrangelo A, Zhang X, Shetty JK, Attie KM, Tartaglione I. Long-term safety and erythroid response with luspatercept treatment in patients with β-thalassemia. Ther Adv Hematol 2022; 13:20406207221134404. [PMID: 36505885 PMCID: PMC9726852 DOI: 10.1177/20406207221134404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/30/2022] [Indexed: 12/09/2022] Open
Abstract
Background β-thalassemia is a hereditary blood disorder resulting in ineffective erythropoiesis and anemia. Management of anemia with regular blood transfusions is associated with complications including iron overload. Here, we report long-term safety and efficacy results of the first clinical study of luspatercept in β-thalassemia, initiated in 2013, enrolling adults with both nontransfusion-dependent (NTD) and transfusion-dependent (TD) β-thalassemia. Objectives The objective was to report long-term safety data, for up to 5 years of treatment, for 64 patients with TD or NTD β-thalassemia, and long-term efficacy data for a subset of 63 patients with β-thalassemia who received high-dose luspatercept (0.6-1.25 mg/kg): 31 NTD and 32 TD patients. Design The study was a phase 2, noncontrolled, open-label trial comprising a dose-finding base phase and a 5-year extension phase. Methods Endpoints include safety; erythroid response over a continuous 12-week period [NTD: hemoglobin increase from baseline ⩾1.0 or ⩾1.5 g/dl; TD: red blood cell (RBC) transfusion burden reduction, ⩾20%, ⩾33%, or ⩾50%]; and changes in biomarkers of ineffective erythropoiesis, iron metabolism parameters, Functional Assessment of Chronic Illness Therapy - Fatigue (FACIT-F) scores, and 6-min walking distance. Results Median duration of luspatercept exposure for NTD and TD patients was 910 days (range, 40-1850) and 433 days (range, 21-1790), respectively. Seventeen of 31 (54.8%) NTD patients achieved a mean hemoglobin increase of ⩾1.5 g/dl and 19 of 32 (59.4%) TD patients achieved ⩾50% reduction in RBC transfusion burden, during any continuous 12-week period. Median cumulative duration of response was 1126 days (range, 127-1790) for NTD patients and 909 days (range, 87-1734) for TD patients. The most common treatment-related adverse events of any grade were bone pain, headache, and myalgia. Conclusion Long-term assessment of patients with β-thalassemia showed luspatercept was associated with sustained increases in hemoglobin levels in NTD patients and sustained transfusion burden reductions in TD patients. Trial registration (ClinicalTrials.gov Identifiers: NCT01749540 and NCT02268409). Plain Language Summary Long-term safety and erythroid response with luspatercept treatment in patients with β-thalassemia Background: β-thalassemia is a genetic blood disorder caused by mutations in the β-globin gene, which encodes one of the proteins that comprise hemoglobin, a key constituent of red blood cells. Patients with β-thalassemia experience anemia, the main treatment for which is blood transfusions. Long-term repeated blood transfusions lower patients' quality of life, use hospital resources, and the resulting accumulation of excess iron can cause organ failure and decrease life expectancy. The severity of the anemia experienced by patients with β-thalassemia varies; patients with transfusion-dependent β-thalassemia require regular blood transfusions, compared with those with nontransfusion-dependent β-thalassemia who require infrequent transfusions, or even none at all, to manage their symptoms. Luspatercept (Reblozyl®) is an agent that stimulates the production of red blood cells and is used to treat anemia caused by β-thalassemia. However, the long-term effects of luspatercept treatment on patients with β-thalassemia are not known.Objective: In this study, we report the long-term safety of luspatercept in 64 adult patients with either transfusion-dependent or nontransfusion-dependent β-thalassemia, and the long-term efficacy of high-dose luspatercept (0.6-1.25 mg/kg) in a subset of 63 patients.Results: The average time period that patients were treated with luspatercept was 910 days for nontransfusion-dependent β-thalassemia and 433 days for transfusion-dependent β-thalassemia. We report that in patients with nontransfusion-dependent β-thalassemia, luspatercept treatment was associated with sustained increases, just over 3 years, in hemoglobin levels. Likewise, in transfusion-dependent β-thalassemia, luspatercept treatment was associated with a sustained reduction, 2.5 years, in the amount of blood transfusion required to manage their anemia. Long-term treatment with luspatercept was not associated with any new side effects compared with previous short-term treatment studies. The most common side effects were headache (27 patients), bone pain (20 patients), and muscle pain (14 patients) with more than 90% of these patients experiencing these side effects as mild severity.Conclusion: The results of this study show that in patients with either transfusion-dependent or nontransfusion-dependent β-thalassemia, luspatercept provides lasting reduction in anemia with mostly mild and predictable side effects.
Collapse
Affiliation(s)
| | - Filomena Longo
- Department of Clinical and Biological Sciences, Turin University, Turin, Italy
| | | | - Ersi Voskaridou
- Thalassemia and Sickle Cell Center, Laiko General Hospital, Athens, Greece
| | - Paolo Ricchi
- Malattie Rare Del Globulo Rosso, AORN Cardarelli, Naples, Italy
| | | | | | | | - Jeevan K. Shetty
- Celgene International Sàrl, Bristol-Myers Squibb Company, Boudry, Switzerland
| | | | | |
Collapse
|
11
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
13
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|