1
|
Carapezza G, Minardi SP, Noci S, Pintarelli G, Zanutto S, Incarbone M, Tosi D, Dragani TA, Colombo F, Pierotti MA, Gariboldi M. Germline Whole-Exome Sequencing in Non-Smoker Lung Cancer Patients Reveals Pathogenic Variants in Lung Cancer Driver Genes. Genes Chromosomes Cancer 2025; 64:e70040. [PMID: 40119744 PMCID: PMC11929153 DOI: 10.1002/gcc.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
Approximately 10%-15% of all lung cancers arise in non-smokers. Although there are no established aetiological factors, non-smokers with a family history of cancer have an increased risk of lung cancer, implying host genetic factors in lung cancer susceptibility. We sought to identify, in a cohort of 75 patients recruited before lung lobectomy, germline alterations with a strong association with lung cancer. Whole-exome sequencing was performed on genomic DNA from peripheral blood. Six resources were used to select pathogenic germline variants with strong clinical significance. In total, 33 pathogenic or likely pathogenic variants in 31 genes were identified. Of these, 13 were located in cancer-predisposing genes (nine were lung cancer drivers), most of which were involved in DNA repair mechanisms and diseases of metabolism. Among DNA repair-related genes, BRCA1 and BRCA2, and ATM have also been identified in other studies on non-smokers. Our results strongly support the hypothesis that a number of non-smoker lung cancer patients carry germline variants in cancer-predisposing genes, suggesting that lung cancer patients, particularly non-smokers, should be considered for germline molecular testing.
Collapse
Affiliation(s)
- Giovanni Carapezza
- Cogentech S.R.L.Benefit C. With Only Stakeholder Fondazione IFOM ETSMilanoItaly
| | | | - Sara Noci
- Fondazione IRCCS Istituto Nazionale Dei TumoriMilanoItaly
| | | | | | | | - Davide Tosi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | | | - Francesca Colombo
- National Research CouncilInstitute for Biomedical TechnologiesSegrateItaly
| | | | | |
Collapse
|
2
|
Toprani SM, Scheibler C, Mordukhovich I, McNeely E, Nagel ZD. Cosmic Ionizing Radiation: A DNA Damaging Agent That May Underly Excess Cancer in Flight Crews. Int J Mol Sci 2024; 25:7670. [PMID: 39062911 PMCID: PMC11277465 DOI: 10.3390/ijms25147670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
In the United States, the Federal Aviation Administration has officially classified flight crews (FC) consisting of commercial pilots, cabin crew, or flight attendants as "radiation workers" since 1994 due to the potential for cosmic ionizing radiation (CIR) exposure at cruising altitudes originating from solar activity and galactic sources. Several epidemiological studies have documented elevated incidence and mortality for several cancers in FC, but it has not yet been possible to establish whether this is attributable to CIR. CIR and its constituents are known to cause a myriad of DNA lesions, which can lead to carcinogenesis unless DNA repair mechanisms remove them. But critical knowledge gaps exist with regard to the dosimetry of CIR, the role of other genotoxic exposures among FC, and whether possible biological mechanisms underlying higher cancer rates observed in FC exist. This review summarizes our understanding of the role of DNA damage and repair responses relevant to exposure to CIR in FC. We aimed to stimulate new research directions and provide information that will be useful for guiding regulatory, public health, and medical decision-making to protect and mitigate the risks for those who travel by air.
Collapse
Affiliation(s)
- Sneh M. Toprani
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| | - Christopher Scheibler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| | - Irina Mordukhovich
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
- Sustainability and Health Initiative (SHINE), Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Eileen McNeely
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
- Sustainability and Health Initiative (SHINE), Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Zachary D. Nagel
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| |
Collapse
|
3
|
Nordengen AL, Zheng C, Krutto A, Kværner AS, Alavi DT, Henriksen HB, Henriksen C, Smeland S, Bøhn SK, Paur I, Shaposhnikov S, Collins AR, Blomhoff R. Effect of a personalized intensive dietary intervention on base excision repair (BER) in colorectal cancer patients: Results from a randomized controlled trial. Free Radic Biol Med 2024; 218:178-189. [PMID: 38588903 DOI: 10.1016/j.freeradbiomed.2024.04.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
DNA repair is essential to maintain genomic integrity and may affect colorectal cancer (CRC) patients' risk of secondary cancers, treatment efficiency, and susceptibility to various comorbidities. Bioactive compounds identified in plant foods have the potential to modulate DNA repair mechanisms, but there is limited evidence of how dietary factors may affect DNA repair activity in CRC patients in remission after surgery. The aim of this study was to investigate the effect of a 6-month personalized intensive dietary intervention on DNA repair activity in post-surgery CRC patients (stage I-III). The present study included patients from the randomized controlled trial CRC-NORDIET, enrolled 2-9 months after surgery. The intervention group received an intensive dietary intervention emphasizing a prudent diet with specific plant-based foods suggested to dampen inflammation and oxidative stress, while the control group received only standard care advice. The comet-based in vitro repair assay was applied to assess DNA repair activity, specifically base excision repair (BER), in peripheral blood mononuclear cells (PBMCs). Statistical analyses were conducted using gamma generalized linear mixed models (Gamma GLMM). A total of 138 CRC patients were included, 72 from the intervention group and 66 from the control group. The BER activity in the intervention group did not change significantly compared to the control group. Our findings revealed a substantial range in both inter- and intra-individual levels of BER. In conclusion, the results do not support an effect of dietary intervention on BER activity in post-surgery CRC patients during a 6-month intervention period.
Collapse
Affiliation(s)
- Anne Lene Nordengen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Norgenotech AS, Oslo Cancer Cluster Incubator, Oslo, Norway; Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway.
| | - Congying Zheng
- Norgenotech AS, Oslo Cancer Cluster Incubator, Oslo, Norway; Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translation Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Annika Krutto
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Ane S Kværner
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Dena T Alavi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Hege B Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Sigbjørn Smeland
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Norway, Oslo, Norway
| | - Siv K Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ingvild Paur
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Norwegian Advisory Unit on Disease-Related Undernutrition, Oslo University Hospital, Oslo, Norway; Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Paz-Sabillón M, Montes-Castro N, Torres-Sánchez L, Del Razo LM, Córdova EJ, Quintanilla-Vega B. Decreased DNA repair capacity caused by exposure to metal mixtures is modulated by the PARP1 rs1136410 variant in newborns from a polluted metropolitan area. ENVIRONMENTAL RESEARCH 2024; 241:117631. [PMID: 37972809 DOI: 10.1016/j.envres.2023.117631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND DNA damage caused by exposure to metal mixtures and the potential modulating role of genes involved in DNA repair and the antioxidant response have not been evaluated in newborns. AIM The aim was to evaluate the association between prenatal exposure to metal mixtures and DNA repair capacity (DRC) in newborns from the Metropolitan Area of Mexico City (MAMC), a heavily polluted area, and the impact of variants in genes involved in DNA repair and the antioxidant response on this association. METHODS We analyzed cord blood samples obtained at delivery from 125 healthy newborns from the MAMC. Twenty-four elements were determined by inductively coupled plasma mass spectrometry (ICP‒MS), but only 12 (Cu, I, Se, Zn, As, Ba, Cs, Mn, Sb, Sr, Pb, and Ti) were quantified in most samples. DRC was assessed by the challenge-comet assay, and OGG1, PARP1, and NFE2L2 genotyping was performed with TaqMan probes. Metal mixtures were identified and analyzed using principal component analysis (PCA) and weighted quantile sum (WQS) regression. Independent adjusted linear regression models were used to evaluate the associations. RESULTS A null DRC was observed in 46% of newborns. The metals with the highest concentrations were Mn, Sr, Ti, and Pb. Essential elements showed normal levels. Only the mixture characterized by increased As, Cs, Cu, Se, and Zn levels was inversely associated with DRC. As was the principal contributor (37.8%) in the negative direction in the DRC followed by Ba and Sb, according to the WQS regression. Newborns carrying of the derived (G) allele of the PARP1 rs1136410 variant showed decreased DRC by exposure to some potentially toxic metals (PTMs) (As, Cs, and Ba). CONCLUSION Prenatal exposure to metal mixtures negatively affected DRC in newborns, and the PARP1 rs1136410 variant had a modulating role in this association.
Collapse
Affiliation(s)
- Marvin Paz-Sabillón
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico
| | - Nereida Montes-Castro
- Department of Health Sciences, Autonomous University of the West, Culiacán Regional Unit, Lola Beltrán Blvd, Culiacán, Sinaloa, 80020, Mexico
| | - Luisa Torres-Sánchez
- Center for Population Health Research, National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos, 62100, Mexico
| | - Luz M Del Razo
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico
| | - Emilio J Córdova
- Oncogenomics Consortium Laboratory, National Institute of Genomic Medicine, Department of Clinic Research, Arenal Tepepan, Mexico City, 14610, Mexico
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico.
| |
Collapse
|
5
|
Thomas OE, Oduwole RT, Akin-Taylor A. Comparison of the DNA-binding interactions of 5-hydroxymethylfurfural and its synthesized derivative, 5, 5’[oxy-bis(methylene)]bis-2-furfural: experimental, DFT and docking studies. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2183705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Mladenov E, Mladenova V, Stuschke M, Iliakis G. New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement. Int J Mol Sci 2023; 24:14956. [PMID: 37834403 PMCID: PMC10573367 DOI: 10.3390/ijms241914956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Radiation therapy is an essential component of present-day cancer management, utilizing ionizing radiation (IR) of different modalities to mitigate cancer progression. IR functions by generating ionizations in cells that induce a plethora of DNA lesions. The most detrimental among them are the DNA double strand breaks (DSBs). In the course of evolution, cells of higher eukaryotes have evolved four major DSB repair pathways: classical non-homologous end joining (c-NHEJ), homologous recombination (HR), alternative end-joining (alt-EJ), and single strand annealing (SSA). These mechanistically distinct repair pathways have different cell cycle- and homology-dependencies but, surprisingly, they operate with widely different fidelity and kinetics and therefore contribute unequally to cell survival and genome maintenance. It is therefore reasonable to anticipate tight regulation and coordination in the engagement of these DSB repair pathway to achieve the maximum possible genomic stability. Here, we provide a state-of-the-art review of the accumulated knowledge on the molecular mechanisms underpinning these repair pathways, with emphasis on c-NHEJ and HR. We discuss factors and processes that have recently come to the fore. We outline mechanisms steering DSB repair pathway choice throughout the cell cycle, and highlight the critical role of DNA end resection in this process. Most importantly, however, we point out the strong preference for HR at low DSB loads, and thus low IR doses, for cells irradiated in the G2-phase of the cell cycle. We further explore the molecular underpinnings of transitions from high fidelity to low fidelity error-prone repair pathways and analyze the coordination and consequences of this transition on cell viability and genomic stability. Finally, we elaborate on how these advances may help in the development of improved cancer treatment protocols in radiation therapy.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
7
|
Farinea G, Crespi V, Listì A, Righi L, Bironzo P, Merlini A, Malapelle U, Novello S, Scagliotti GV, Passiglia F. The Role of Germline Mutations in Thoracic Malignancies: Between Myth and Reality. J Thorac Oncol 2023; 18:1146-1164. [PMID: 37331604 DOI: 10.1016/j.jtho.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Considering the established contribution of environmental factors to the development of thoracic malignancies, the inherited susceptibility of these tumors has rarely been explored. However, the recent introduction of next-generation sequencing-based tumor molecular profiling in the real-word setting enabled us to deeply characterize the genomic background of patients with lung cancer with or without smoking-related history, increasing the likelihood of detecting germline mutations with potential prevention and treatment implications. Pathogenic germline variants have been detected in 2% to 3% of patients with NSCLC undergoing next-generation sequencing analysis, whereas the proportion of germline mutations associated with the development of pleural mesothelioma widely varies across different studies, ranging between 5% and 10%. This review provides an updated summary of emerging evidence about germline mutations in thoracic malignancies, focusing on pathogenetic mechanisms, clinical features, therapeutic implications, and screening recommendations for high-risk individuals.
Collapse
Affiliation(s)
- Giovanni Farinea
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Veronica Crespi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| |
Collapse
|
8
|
Bacon B, Repin M, Shuryak I, Wu HC, Santella RM, Terry MB, Brenner DJ, Turner HC. High-throughput measurement of double strand break global repair phenotype in peripheral blood mononuclear cells after long-term cryopreservation. Cytometry A 2023; 103:575-583. [PMID: 36823754 PMCID: PMC10680149 DOI: 10.1002/cyto.a.24725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a useful model for biochemical assays, particularly for etiological studies. We describe here a method for measuring DNA repair capacity (DRC) in archival cryogenically preserved PBMCs. To model DRC, we measured γ-H2AX repair kinetics in thawed PBMCs after irradiation with 3 Gy gamma rays. Time-dependent fluorescently labeled γ-H2AX levels were measured at five time points from 1 to 20 h, yielding an estimate of global DRC repair kinetics as well as a measure of unrepaired double strand breaks at 20 h. While γ-H2AX levels are traditionally measured by either microscopy or flow-cytometry, we developed a protocol for imaging flow cytometry (IFC) that combines the detailed information of microscopy with the statistical power of flow methods. The visual imaging component of the IFC allows for monitoring aspects such as cellular health and apoptosis as well as fluorescence localization of the γ-H2AX signal, which ensures the power and significance of this technique. Application of a machine-learning based image classification improved flow cytometry fluorescent measurements by identifying apoptotic cells unable to undergo DNA repair. We present here DRC repair parameters from 18 frozen archival PBMCs and 28 fresh blood samples collected from a demographically diverse cohort of women measured in a high-throughput IFC format. This thaw method and assay can be used alone or in conjunction with other assays to measure etiological phenotypes in cryogenic biobanks of PBMCs.
Collapse
Affiliation(s)
- Bezalel Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Epidemiology, Mailman School of Public Health, Columbia University, Irving Medical Center, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| |
Collapse
|
9
|
Okunola HL, Shuryak I, Repin M, Wu HC, Santella RM, Terry MB, Turner HC, Brenner DJ. Improved prediction of breast cancer risk based on phenotypic DNA damage repair capacity in peripheral blood B cells. RESEARCH SQUARE 2023:rs.3.rs-3093360. [PMID: 37461559 PMCID: PMC10350237 DOI: 10.21203/rs.3.rs-3093360/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Standard Breast Cancer (BC) risk prediction models based only on epidemiologic factors generally have quite poor performance, and there have been a number of risk scores proposed to improve them, such as AI-based mammographic information, polygenic risk scores and pathogenic variants. Even with these additions BC risk prediction performance is still at best moderate. In that decreased DNA repair capacity (DRC) is a major risk factor for development of cancer, we investigated the potential to improve BC risk prediction models by including a measured phenotypic DRC assay. Methods Using blood samples from the Breast Cancer Family Registry we assessed the performance of phenotypic markers of DRC in 46 matched pairs of individuals, one from each pair with BC (with blood drawn before BC diagnosis) and the other from controls matched by age and time since blood draw. We assessed DRC in thawed cryopreserved peripheral blood mononuclear cells (PBMCs) by measuring γ-H2AX yields (a marker for DNA double-strand breaks) at multiple times from 1 to 20 hrs after a radiation challenge. The studies were performed using surface markers to discriminate between different PBMC subtypes. Results The parameter F res , the residual damage signal in PBMC B cells at 20 hrs post challenge, was the strongest predictor of breast cancer with an AUC (Area Under receiver-operator Curve) of 0.89 [95% Confidence Interval: 0.84-0.93] and a BC status prediction accuracy of 0.80. To illustrate the combined use of a phenotypic predictor with standard BC predictors, we combined F res in B cells with age at blood draw, and found that the combination resulted in significantly greater BC predictive power (AUC of 0.97 [95% CI: 0.94-0.99]), an increase of 13 percentage points over age alone. Conclusions If replicated in larger studies, these results suggest that inclusion of a fingerstick-based phenotypic DRC blood test has the potential to markedly improve BC risk prediction.
Collapse
Affiliation(s)
| | | | | | - Hui-Chen Wu
- Columbia University Mailman School of Public Health
| | | | | | | | | |
Collapse
|
10
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|