1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Potrich D, Montel L, Stancher G, Baratti G, Vallortigara G, Sovrano VA. Proto-arithmetic abilities in zebrafish ( Danio rerio). Heliyon 2024; 10:e40585. [PMID: 39669161 PMCID: PMC11636080 DOI: 10.1016/j.heliyon.2024.e40585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/26/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
The increasing use of zebrafish (Danio rerio) as a model for studying the neural bases of numerical/quantity abilities pushes toward the development of fast and reliable behavioral tasks for this species. Here, we investigated the spontaneous use of proto-arithmetic in quantity discrimination in zebrafish taking advantage of their shoaling behavior. Male fish underwent preference choice tests in which sets of live female conspecifics sequentially disappeared one by one behind one of two opaque identical panels. Fish spontaneously approached the panel occluding the larger set in a "1 vs. 2" comparison, but failed at "2 vs. 3" and "2 vs. 4". Limited to an overall amount of three elements in the two groups, zebrafish appeared to be able to deal with additions and subtractions, also suggesting the implicit understanding of an "empty set" (zero) concept. The velocity and the sequential/simultaneous presentation of the stimuli affected the spontaneous preference towards the group with the largest quantity.
Collapse
Affiliation(s)
- Davide Potrich
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, (TN), Italy
| | - Lorenza Montel
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, (TN), Italy
| | - Gionata Stancher
- Fondazione Museo Civico di Rovereto, 38068, Rovereto, (TN), Italy
| | - Greta Baratti
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, (TN), Italy
| | - Giorgio Vallortigara
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, (TN), Italy
| | - Valeria Anna Sovrano
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, (TN), Italy
- Department of Psychology and Cognitive Science, University of Trento, 38068, Rovereto, (TN), Italy
| |
Collapse
|
3
|
Gedzun VR, Sukhanova IA, Aliper GM, Kotova MM, Melnik NO, Karimova EB, Voronkova AS, Coffman A, Pavshintcev VV, Mitkin NA, Doronin II, Babkin GA, Malyshev AV. From land to water: "Sunken" T-maze for associated learning in cichlid fish. Behav Brain Res 2024; 471:115077. [PMID: 38825022 DOI: 10.1016/j.bbr.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The study introduced and evaluated learning paradigms for Maylandia callainos cichlids using a modified version of the rodent T-maze, filled with tank water (the "sunken" modification). Both male and female fish underwent training in two distinct conditioning paradigms. Firstly, simple operant conditioning involved placing a food reward in either the right or left compartment. Cichlids demonstrated the ability to purposefully find the bait within 6 days of training, with a persistent place preference lasting up to 6 days. Additionally, the learning dynamics varied with sex: female cichlids exhibited reduction in latency to visit the target compartment and consume the bait, along with a decrease in the number of errors 3 and 4 days earlier than males, respectively. Secondly, visually-cued operant conditioning was conducted, with a food reward exclusively placed in the yellow compartment, randomly positioned on the left or right side of the maze during each training session. Visual learning persisted for 10 days until reaction time improvement plateaued. Color preference disappeared after 4 consecutive check-ups, with no sex-related interference. For further validation of visually-cued operant conditioning paradigm, drugs MK-801 (dizocilpine) and caffeine, known to affect performance in learning tasks, were administered intraperitoneally. Chronic MK-801 (0.17 mg/kg) impaired maze learning, resulting in no color preference development. Conversely, caffeine administration enhanced test performance, increasing precision in fish. This developed paradigm offers a viable approach for studying learning and memory and presents an effective alternative to rodent-based drug screening tools, exhibiting good face and predictive validity.
Collapse
|
4
|
Estienne P, Simion M, Hagio H, Yamamoto N, Jenett A, Yamamoto K. Different ways of evolving tool-using brains in teleosts and amniotes. Commun Biol 2024; 7:88. [PMID: 38216631 PMCID: PMC10786859 DOI: 10.1038/s42003-023-05663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024] Open
Abstract
In mammals and birds, tool-using species are characterized by their relatively large telencephalon containing a higher proportion of total brain neurons compared to other species. Some teleost species in the wrasse family have evolved tool-using abilities. In this study, we compared the brains of tool-using wrasses with various teleost species. We show that in the tool-using wrasses, the telencephalon and the ventral part of the forebrain and midbrain are significantly enlarged compared to other teleost species but do not contain a larger proportion of cells. Instead, this size difference is due to large fiber tracts connecting the dorsal part of the telencephalon (pallium) to the inferior lobe, a ventral mesencephalic structure absent in amniotes. The high degree of connectivity between these structures in tool-using wrasses suggests that the inferior lobe could contribute to higher-order cognitive functions. We conclude that the evolution of non-telencephalic structures might have been key in the emergence of these cognitive functions in teleosts.
Collapse
Affiliation(s)
- Pierre Estienne
- Paris-Saclay Institute of Neuroscience (NeuroPSI), Université Paris-Saclay, CNRS UMR9197, Saclay, 91400, France
| | - Matthieu Simion
- TEFOR Paris-Saclay, CNRS UAR2010, Université Paris-Saclay, Saclay, 91400, France
- Université Paris-Saclay, UVSQ, EnvA, INRAE, BREED, Jouy-en-Josas, 78350, France
| | - Hanako Hagio
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UAR2010, Université Paris-Saclay, Saclay, 91400, France
| | - Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (NeuroPSI), Université Paris-Saclay, CNRS UMR9197, Saclay, 91400, France.
| |
Collapse
|
5
|
Ajuwon V, Cruz BF, Carriço P, Kacelnik A, Monteiro T. GoFish: A low-cost, open-source platform for closed-loop behavioural experiments on fish. Behav Res Methods 2024; 56:318-329. [PMID: 36622558 PMCID: PMC10794453 DOI: 10.3758/s13428-022-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/10/2023]
Abstract
Fish are the most species-rich vertebrate group, displaying vast ecological, anatomical and behavioural diversity, and therefore are of major interest for the study of behaviour and its evolution. However, with respect to other vertebrates, fish are relatively underrepresented in psychological and cognitive research. A greater availability of easily accessible, flexible, open-source experimental platforms that facilitate the automation of task control and data acquisition may help to reduce this bias and improve the scalability and refinement of behavioural experiments in a range of different fish species. Here we present GoFish, a fully automated platform for behavioural experiments in aquatic species. GoFish includes real-time video tracking of subjects, presentation of stimuli in a computer screen, an automatic feeder device, and closed-loop control of task contingencies and data acquisition. The design and software components of the platform are freely available, while the hardware is open-source and relatively inexpensive. The control software, Bonsai, is designed to facilitate rapid development of task workflows and is supported by a growing community of users. As an illustration and test of its use, we present the results of two experiments on discrimination learning, reversal, and choice in goldfish (Carassius auratus). GoFish facilitates the automation of high-throughput protocols and the acquisition of rich behavioural data. Our platform has the potential to become a widely used tool that facilitates complex behavioural experiments in aquatic species.
Collapse
Affiliation(s)
- Victor Ajuwon
- Department of Biology, University of Oxford, Oxford, UK.
| | - Bruno F Cruz
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- NeuroGEARS Ltd., London, UK
| | - Paulo Carriço
- Champalimaud Research Scientific Hardware Platform, Champalimaud Foundation, Lisbon, Portugal
| | - Alex Kacelnik
- Department of Biology, University of Oxford, Oxford, UK
| | - Tiago Monteiro
- Department of Biology, University of Oxford, Oxford, UK.
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Kobylkov D, Zanon M, Perrino M, Vallortigara G. Neural coding of numerousness. Biosystems 2023; 232:104999. [PMID: 37574182 DOI: 10.1016/j.biosystems.2023.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Perception of numerousness, i.e. number of items in a set, is an important cognitive ability, which is present in several animal taxa. In spite of obvious differences in neuroanatomy, insects, fishes, reptiles, birds, and mammals all possess a "number sense". Furthermore, information regarding numbers can belong to different sensory modalities: animals can estimate a number of visual items, a number of tones, or a number of their own movements. Given both the heterogeneity of stimuli and of the brains processing these stimuli, it is hard to imagine that number cognition can be traced back to the same evolutionary conserved neural pathway. However, neurons that selectively respond to the number of stimuli have been described in higher-order integration brain centres both in primates and in birds, two evolutionary distant groups. Although most probably not of the same evolutionary origin, these number neurons share remarkable similarities in their response properties. Instead of homology, this similarity might result from computational advantages of the underlying coding mechanism. This means that one might expect numerousness information to undergo similar steps of neural processing even in evolutionary distant neural pathways. Following this logic, in this review we summarize our current knowledge of how numerousness is processed in the brain from sensory input to coding of abstract information in the higher-order integration centres. We also propose a list of key open questions that might promote future research on number cognition.
Collapse
Affiliation(s)
- Dmitry Kobylkov
- Centre for Mind/Brain Science, CIMeC, University of Trento, Rovereto, Italy
| | - Mirko Zanon
- Centre for Mind/Brain Science, CIMeC, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Science, CIMeC, University of Trento, Rovereto, Italy
| | | |
Collapse
|
7
|
Jadoul Y, Duengen D, Ravignani A. PyGellermann: a Python tool to generate pseudorandom series for human and non-human animal behavioural experiments. BMC Res Notes 2023; 16:135. [PMID: 37403146 PMCID: PMC10320995 DOI: 10.1186/s13104-023-06396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE Researchers in animal cognition, psychophysics, and experimental psychology need to randomise the presentation order of trials in experimental sessions. In many paradigms, for each trial, one of two responses can be correct, and the trials need to be ordered such that the participant's responses are a fair assessment of their performance. Specifically, in some cases, especially for low numbers of trials, randomised trial orders need to be excluded if they contain simple patterns which a participant could accidentally match and so succeed at the task without learning. RESULTS We present and distribute a simple Python software package and tool to produce pseudorandom sequences following the Gellermann series. This series has been proposed to pre-empt simple heuristics and avoid inflated performance rates via false positive responses. Our tool allows users to choose the sequence length and outputs a .csv file with newly and randomly generated sequences. This allows behavioural researchers to produce, in a few seconds, a pseudorandom sequence for their specific experiment. PyGellermann is available at https://github.com/YannickJadoul/PyGellermann .
Collapse
Affiliation(s)
- Yannick Jadoul
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Diandra Duengen
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Calvo R, Hofmann MH, Schluessel V. Brain areas activated during visual learning in the cichlid fish Pseudotropheus zebra. Brain Struct Funct 2023; 228:859-873. [PMID: 36920630 PMCID: PMC10147796 DOI: 10.1007/s00429-023-02627-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
The neural correlates of most cognitive functions in fish are unknown. This project aimed to identify brain regions involved in visual learning in the cichlid fish Pseudotropheus zebra. The expression of the protein pS6 was measured in 19 brain areas and compared between groups of individuals subjected to four different behavioral contexts (control, avoidance, trained, and novelty groups). Control group individuals were sacrificed with minimal interactions. Fish in the avoidance group were chased with a net for an hour, after which they were sacrificed. Individuals in the trained group received daily training sessions to associate a visual object with a food reward. They were sacrificed the day they reached learning criterion. Fish in the novelty group were habituated to one set of visual stimuli, then faced a change in stimulus type (novelty stimulus) before they were sacrificed. Fish in the three treatment groups showed the largest activation of pS6 in the inferior lobes and the tectum opticum compared to the control group. The avoidance group showed additional activation in the preoptic area, several telencephalic regions, the torus semicircularis, and the reticular formation. The trained group that received a food reward, showed additional activation of the torus lateralis, a tertiary gustatory center. The only area that showed strong activation in all three treatment groups was the nucleus diffusus situated within the inferior lobe. The inferior lobe receives prominent visual input from the tectum via the nucleus glomerulosus but so far, nothing is known about the functional details of this pathway. Our study showed for the first time that the inferior lobes play an important role in visual learning and object recognition.
Collapse
Affiliation(s)
- R Calvo
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany.
| | - M H Hofmann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany
| | - V Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany
| |
Collapse
|
9
|
Smart sharks: a review of chondrichthyan cognition. Anim Cogn 2023; 26:175-188. [PMID: 36394656 PMCID: PMC9877065 DOI: 10.1007/s10071-022-01708-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
450 million years of evolution have given chondrichthyans (sharks, rays and allies) ample time to adapt perfectly to their respective everyday life challenges and cognitive abilities have played an important part in that process. The diversity of niches that sharks and rays occupy corresponds to matching diversity in brains and behaviour, but we have only scratched the surface in terms of investigating cognition in this important group of animals. The handful of species that have been cognitively assessed in some detail over the last decade have provided enough data to safely conclude that sharks and rays are cognitively on par with most other vertebrates, including mammals and birds. Experiments in the lab as well as in the wild pose their own unique challenges, mainly due to the handling and maintenance of these animals as well as controlling environmental conditions and elimination of confounding factors. Nonetheless, significant advancements have been obtained in the fields of spatial and social cognition, discrimination learning, memory retention as well as several others. Most studies have focused on behaviour and the underlying neural substrates involved in cognitive information processing are still largely unknown. Our understanding of shark cognition has multiple practical benefits for welfare and conservation management but there are obvious gaps in our knowledge. Like most marine animals, sharks and rays face multiple threats. The effects of climate change, pollution and resulting ecosystem changes on the cognitive abilities of sharks and stingrays remain poorly investigated and we can only speculate what the likely impacts might be based on research on bony fishes. Lastly, sharks still suffer from their bad reputation as mindless killers and are heavily targeted by commercial fishing operations for their fins. This public relations issue clouds people's expectations of shark intelligence and is a serious impediment to their conservation. In the light of the fascinating results presented here, it seems obvious that the general perception of sharks and rays as well as their status as sentient, cognitive animals, needs to be urgently revisited.
Collapse
|