1
|
Kamsrijai U, Charoensup R, Jaidee W, Hawiset T, Thaweethee-Sukjai B, Praman S. Cannabidiol/cannabidiolic acid-rich hemp (Cannabis sativa L.) extract attenuates cognitive impairments and glial activations in rats exposed to chronic stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119113. [PMID: 39551282 DOI: 10.1016/j.jep.2024.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemp (Cannabis sativa L.) is increasingly being recognized for its medicinal properties beside utilizing it for food, oil, and textile fibers. The high level of cannabidiol (CBD) content in hemp's flowers shows promising neuroprotective properties without causing psychotomimetic or addictive effects. Recently, products containing CBD and its precursor, cannabidiolic acid (CBDA), have been used to treat stress-related cognitive impairment. However, the therapeutic potential of hemp extract remains inadequately explored. AIM OF THE STUDY To investigate the effect of CBD/CBDA-rich hemp extract on learning and memory, neuroendocrine alterations, and hippocampal neuropathological changes in the chronic restraint stress model. MATERIALS AND METHODS Chronic restraint stress (CRS) was induced in male Wistar rats by immobilizing them in a restrainer for 6 h per day for 21 consecutive days. CBD/CBDA-rich hemp extract (10 and 30 mg/kg, intraperitoneal injection) was administered daily, 1 h before restraint. After the last day of CRS, behavioral tests for cognition were conducted using the Y-maze and object recognition tests. Serum corticosterone (CORT) levels were measured by ELISA. Histopathological changes, neuronal density, and the activation of microglia and astrocytes were visualized using cresyl violet and immunohistochemical staining. RESULTS A high dose of CBD/CBDA-rich hemp extract effectively ameliorated CRS-induced cognitive impairment and reversed HPA axis hyperactivity in CRS rats by reducing CORT levels and adrenal gland weight. Additionally, CBD/CBDA-rich hemp extract protected CRS-induced damage to hippocampal neurons. Further analysis showed that CBD/CBDA-rich hemp extract reduced specific markers of microglial activation (ionized calcium-binding adaptor molecule-1, Iba-1) and astrocytic structural protein (glial fibrillary acidic protein, GFAP) in CRS rats. CONCLUSION CBD/CBDA-rich hemp extracts remarkably reversed the stress-induced behavioral perturbations and hippocampal damage, suggesting its ameliorative effect on stress response.
Collapse
Affiliation(s)
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Integrative Medicine, Major of Applied Thai Traditional Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
2
|
Aragona F, Tabbì M, Gugliandolo E, Giannetto C, D’Angelo F, Fazio F, Interlandi C. Role of cannabidiolic acid or the combination of cannabigerol/cannabidiol in pain modulation and welfare improvement in horses with chronic osteoarthritis. Front Vet Sci 2024; 11:1496473. [PMID: 39720409 PMCID: PMC11668182 DOI: 10.3389/fvets.2024.1496473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychotropic cannabinoid obtained from hemp (Cannabis sativa L.) used for pain management in companion animals including horses. The present study aimed to evaluate the efficacy of cannabidiolic acid (CBDA) and cannabigerol/cannabidiol oil (CBG/CBD) oral administration in alleviating pain in adult horses affected by chronic osteoarthritis (OA). Twenty-four horses (10 geldings and 14 mares), aged between 11 and 18 years old, were equally divided into two groups. One group received CBDA 15% oil and the other group received CBG/CBD oil (CBG20%-CBD10%) for 14 consecutive days. A standard dose of 0.07 mg/kg was chosen based on the mean body weight of 450 ± 28 kg. Horse Chronic Pain Scale (HCPS) and physiological parameters monitoring heart rate (HR), respiratory rate (RR), arterial blood pressure (systolic arterial pressure- SAP, diastolic arterial pressure- DAP) were assessed before (T0) and every day for the entire administration (T1-T14). Blood samples were collected for the evaluation of complete hemogram, Leukocyte subpopulation identification and counting and leukocyte differentiation antigens CD4 and CD8 at the day before the administration (T0) and every 7 days (T7 and T14). A reduction of HCPS pain scale scores and the number of WBC, monocytes and neutrophils and CD8 was observed with both CBDA and CBG/CBD treatment. No statistical differences were found in the physiological parameters. No subject required rescue analgesia or showed any adverse effects. The results of this study showed that oral administration of both CBDA and CBG/CBD oil may promote pain reduction in adult horses affected by chronic OA.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Marco Tabbì
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Interlandi
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Stevens SA, Edwards SH, Noble GK, Scrivener CJ, Krebs GL, Petzel CE, May CD, Tai ZX, Blake BL, Dods KC, Warne LN. The Pharmacokinetics of Δ 9-Tetrahydrocannabinol in Sheep. Animals (Basel) 2024; 14:3328. [PMID: 39595380 PMCID: PMC11590932 DOI: 10.3390/ani14223328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The pharmacokinetics of Δ9-tetrahydrocannabinol (Δ9-THC) has not been established in ruminants. Pharmacokinetic knowledge is important given feeding industrial hemp biomass has been shown to result in tissue residues post feeding in sheep. Due to a lack of testing and available data, a 'maximum' concentration of Δ9-THC has not been currently set for foods of animal origin. Consequently, this study was designed to gain a better understanding of how ruminants process Δ9-THC. Eight Merino ewes were administered with two per os (PO) doses of 88.5 mg Δ9-THC/kg bodyweight (BW) 12 h apart. Blood samples were collected periodically post dosing to determine the pharmacokinetics of Δ9-THC and subcutaneous fat biopsies were taken to investigate the deposition and elimination of Δ9-THC from sheep. An elimination half-life of 31.40 ± 13.87 h was identified, with residues persisting in the subcutaneous fat for 28 d in five of the eight sheep, before decreasing below the limit of detection in all sheep by 91 d. These results support the prolonged presence of Δ9-THC residues previously identified. Thus, imposing a practical withholding period for ruminants involved in the food chain may not be possible, with further research required to investigate how iHemp biomass may be safely fed to ruminants.
Collapse
Affiliation(s)
- Sarah A. Stevens
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (S.H.E.); (G.K.N.); (C.J.S.); (G.L.K.); (C.E.P.)
| | - Scott H. Edwards
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (S.H.E.); (G.K.N.); (C.J.S.); (G.L.K.); (C.E.P.)
| | - Glenys K. Noble
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (S.H.E.); (G.K.N.); (C.J.S.); (G.L.K.); (C.E.P.)
| | - Colin J. Scrivener
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (S.H.E.); (G.K.N.); (C.J.S.); (G.L.K.); (C.E.P.)
| | - Gaye L. Krebs
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (S.H.E.); (G.K.N.); (C.J.S.); (G.L.K.); (C.E.P.)
| | - Christopher E. Petzel
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (S.H.E.); (G.K.N.); (C.J.S.); (G.L.K.); (C.E.P.)
| | | | - Zi Xuan Tai
- ChemCentre, Bentley, WA 6983, Australia; (C.D.M.); (Z.X.T.)
| | - Bronwyn L. Blake
- Hemp Feed Solutions, Vasse Valley, North Jindong, WA 6280, Australia;
| | | | - Leon N. Warne
- The Vet Pharmacist, East Fremantle, WA 6158, Australia;
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6002, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
4
|
Irawan A, Muchiri RN, Parker NB, van Breemen RB, Ates S, Bionaz M. Cannabinoid residuals in tissues of lambs fed spent hemp biomass and consumer's exposure assessment. Food Chem Toxicol 2024; 191:114848. [PMID: 38971552 DOI: 10.1016/j.fct.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Spent hemp biomass (SHB) contains trace amounts of cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), that may accumulate in the tissues of animals consuming SHB. We measured cannabinoid residues in the liver, adipose tissue, and muscle of finishing lambs fed either 10% or 20% SHB for 8 weeks, or 4 weeks followed by 4 weeks SHB withdrawal. We detected multiple cannabinoids in the liver at a similar proportion to the SHB. However, CBD and Δ9-THC were enriched >20-fold in the adipose and muscle, compared to their proportion in SHB. The highest concentration of Δ9-THC was detected in adipose tissue and was 7.4-times higher than in muscle. Most cannabinoids were undetectable in tissues after 4 weeks of clearance. The consumers' exposure assessment on Δ9-THC revealed tissue levels of total THC (THCA+Δ9-THC) that exceed the acute reference dose of 1 μg/kg BW across population groups. When consuming meat from the lambs fed 10% and 20% SHB, the maximum total THC exposure was 2.03 and 7.32 μg/kg BW, respectively, equal to or below the Lowest Observed Adverse Effect Level of 36 μg/kg BW, the No Observed Adverse Effect Level of 12 μg/kg BW or a tolerable dose intake of 7 μg/kg BW.
Collapse
Affiliation(s)
- Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA; Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Ruth N Muchiri
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, 97331, USA
| | - Nathan B Parker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA
| | - Richard B van Breemen
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, 97331, USA
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA.
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA.
| |
Collapse
|
5
|
Tathong T, Khamhan S, Soisungwan S, Phoemchalard C. Effects of Hemp-Derived Cannabidiol Supplementation on Blood Variables, Carcass Characteristics, and Meat Quality of Goats. Animals (Basel) 2024; 14:1718. [PMID: 38929337 PMCID: PMC11200617 DOI: 10.3390/ani14121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stress experienced by animals during pre-mortem management handling significantly affects both their welfare and the quality of the meat produced. Using hemp-derived CBD may offer several benefits in alleviating this issue. In this study, we investigated the effects of hemp-derived CBD supplementation on blood variables, growth performance, carcass characteristics, and meat quality in goats. Sixteen crossbred Boer goats were divided into four groups receiving a basal diet supplemented with 0 (control), 0.1, 0.2, or 0.3 mL CBD/30 kg body weight over 90 days. Although growth, carcass characteristics, and pH remained unaffected, CBD supplementation influenced several blood variables. Specifically, dietary CBD at 0.1-0.3 mL increased white blood cell (WBC) counts, while 0.3 mL CBD increased serum total protein, globulin, sodium, and carbon dioxide levels, potentially affecting protein metabolism and electrolyte balance. Over time, significant changes were noted in hematological profiles, kidney markers, protein profiles, and some electrolytes, indicating physiological adaptations. Regarding meat quality, supplementation with 0.2-0.3 mL of CBD linearly improved color redness and stability; moreover, CBD supplementation improved tenderness and textural properties, resulting in a softer meat texture. However, analysis using an E-nose indicated increased ammonia and organic solvent vapors in meat from the higher CBD groups. This study concluded that CBD supplementation up to 0.3 mL of CBD/30 kg body weight beneficially modulated blood biomarkers, meat color, and tenderness without adverse impacts on growth or carcass characteristics in goats.
Collapse
Affiliation(s)
- Tanom Tathong
- Department of Food Technology, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Supawut Khamhan
- That Phanom College, Nakhon Phanom University, Nakhon Phanom 48110, Thailand;
| | - Salinee Soisungwan
- Department of Food Technology, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Chirasak Phoemchalard
- Department of Agriculture, Mahidol University, Amnatcharoen Campus, Amnatcharoen 37000, Thailand;
- Excellence Center on Agriculture and Food for Health, Mahidol University, Amnatcharoen Campus, Amnatcharoen 37000, Thailand
| |
Collapse
|
6
|
Ran T, Xu Z, Yang W, Liu D, Wu D. Partially substituting alfalfa hay with hemp forage in the diet of goats improved feed efficiency, ruminal fermentation pattern and microbial profiles. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:49-60. [PMID: 38558755 PMCID: PMC10980998 DOI: 10.1016/j.aninu.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
The use of hemp as a forage source in livestock diets has been less studied because bioactive residues in animal tissues may pose a risk to consumers. This study investigated the effects of partial substitution of alfalfa hay (AH) with hemp forage (HF) in growing goat diets on growth performance, carcass traits, ruminal fermentation characteristics, rumen microbial communities, blood biochemistry, and antioxidant indices. Forty Xiangdong black goats with body weight (BW) 7.82 ± 0.57 kg (mean ± SD) were grouped by BW and randomly assigned into one of the four treatment diets (n = 10/treatment) in a completely randomized design. The goats were fed ad libitum total mixed rations containing 60% forage and 40% concentrate (DM basis). The diets included control (CON; 60% AH and 40% concentrate), 55% AH and 5% HF (HF5), 50% AH and 10% HF (HF10), and 40% AH and 20% HF (HF20). Increasing the substitution of HF for AH linearly decreased (P < 0.01) DM intake and improved feed conversion efficiency. However, final BW, average daily gain, carcass traits, meat quality, and most blood biochemistry indices did not differ among treatments. The ruminal NH3-N concentration and blood urine nitrogen linearly increased (P < 0.01) with increasing substitution rate of HF, whereas the total volatile fatty acids concentration quadratically changed (P < 0.01). Substitution of AH with HF had no effect on the diversity and richness of ruminal microbes, though it linearly decreased (P = 0.040) Prevotella_1 and linearly increased (P = 0.017) Rikenellaceae_RC9_gut_group. The cannabinoids and/or their metabolites were detected in both ruminal filtrates (8) and plasma (4), however, no detectable cannabinoid-related residues were observed in meat. These results indicate that the HF could be used to partially substitute AH in goat diets, whereas the effects vary between substitution rates of HF for AH. Although no cannabinoid-related residues were detected in meat, the presence of cannabinoids residues in blood warrants further study of HF feeding to confirm the cannabinoids residues are not present in the animal products.
Collapse
Affiliation(s)
- Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou, 730020, Gansu, China
| | - Zhipeng Xu
- Changshu Center for Animal Disease Prevention and Control, Changshu, 215500, Jiangsu, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Dalin Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Duanqin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| |
Collapse
|
7
|
Tabiś A, Szumny A, Bania J, Pacyga K, Lewandowska K, Kupczyński R. Comparison of the Effects of Essential Oils from Cannabis sativa and Cannabis indica on Selected Bacteria, Rumen Fermentation, and Methane Production-In Vitro Study. Int J Mol Sci 2024; 25:5861. [PMID: 38892045 PMCID: PMC11172183 DOI: 10.3390/ijms25115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to evaluate the effects of essential oils (EOs) extracted from Cannabis sativa L. and Cannabis indica Lam. on in vitro ruminal fermentation characteristics, selected rumen microbial populations, and methane production. GC-MS analyses allowed us to identify 89 compounds in both EOs. It was found that E-β-caryophyllene predominated in C. sativa (18.4%) and C. indica (24.1%). An in vitro (Ankom) test was performed to analyse the control and monensin groups, as well as the 50 µL or 100 µL EOs. The samples for volatile fatty acids (VFAs), lactate, and microbiological analysis were taken before incubation and after 6 and 24 h. The application of EOs of C. indica resulted in an increase in the total VFAs of acetate and propionate after 6 h of incubation. The applied EOs had a greater impact on the reduction in methane production after 6 h, but no apparent effect was noted after 24 h. Lower concentrations of C. sativa and C. indica had a more pronounced effect on Lactobacillus spp. and Buryrivibrio spp. than monensin. The presented findings suggest that C. sativa and C. indica supplementation can modify ruminal fermentation, the concentrations of specific volatile fatty acids, and methane production.
Collapse
Affiliation(s)
- Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.T.); (J.B.)
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.T.); (J.B.)
| | - Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (K.P.); (K.L.)
| | - Kamila Lewandowska
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (K.P.); (K.L.)
| | - Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (K.P.); (K.L.)
| |
Collapse
|
8
|
Czauderna M, Taubner T, Wojtak W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules 2024; 29:2165. [PMID: 38792027 PMCID: PMC11124110 DOI: 10.3390/molecules29102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.
Collapse
Affiliation(s)
- Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Tomáš Taubner
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, CZ-104 00 Praha, Czech Republic;
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
9
|
Thomson ACS, McCarrel TM, Zakharov A, Gomez B, Lyubimov A, Schwark WS, Mallicote MF, Portela DA, Bisiau AL, Wakshlag JJ. Pharmacokinetics and tolerability of single-dose enteral cannabidiol and cannabidiolic acid rich hemp in horses ( Equus caballus). Front Vet Sci 2024; 11:1356463. [PMID: 38681854 PMCID: PMC11047043 DOI: 10.3389/fvets.2024.1356463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
The pharmacokinetics and tolerability of cannabinoids and their metabolites were determined in eight horses after enteral administration of a commercial CBD/CBDA-rich hemp oil product. Each horse was administered 2 mg/kg or 8 mg/kg CBD/CBDA or no treatment in a randomized cross-over design. Serial serum samples collected over 48 h were analyzed by high performance liquid chromatography with tandem mass spectrometry. Plasma chemistry analysis was performed at 0 h and 24 h. Vital parameters, pedometry, and blinded mentation and gait evaluations were recorded at intervals up to 24 h. Manure production and gastrointestinal transit time were tracked for 48 h after oil administration. The median maximal concentration of CBD and CBDA were 5.2 and 36.95 ng/mL in the 2 mg/kg group, respectively; and 40.35 and 353.56 ng/mL in the 8 mg/kg group. The median half-life of elimination was not calculated for the 2 mg/kg CBD treatment due to lack of time points above the lower quantifiable limit beyond the Cmax while it was 7.75 h in the 8 mg/kg group. CBDA absorption was biphasic. Pharmacokinetic parameters for tetrahydrocannabinol, tetrahydrocannabinolic acid, cannabigerolic acid, and 7-carboxy cannabidiol are also reported. No significant differences in any of the measured tolerability parameters were demonstrated between treatment groups. Single-dose enteral administration of CBD/CBDA-rich hemp extract up to 8 mg/kg does not appear to produce neurologic, behavioral, or gastrointestinal effects in horses.
Collapse
Affiliation(s)
- Alexander C. S. Thomson
- Department of Comparative, Population, and Diagnostic Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Taralyn M. McCarrel
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Alexander Zakharov
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Beatriz Gomez
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Alex Lyubimov
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Wayne S. Schwark
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Martha F. Mallicote
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Diego A. Portela
- Department of Comparative, Population, and Diagnostic Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Amber L. Bisiau
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Joseph J. Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Han C, Li M, Li F, Wang Z, Hu X, Yang Y, Wang H, Lv S. Temporary sensory separation of lamb groups from ewes affects behaviors and serum levels of stress-related indicators of small-tailed Han lambs. Physiol Behav 2024; 277:114504. [PMID: 38408718 DOI: 10.1016/j.physbeh.2024.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Under the current meat sheep breeding system, newborn lambs usually live with their mothers until weaning, and in daily management, they often need to be separated from their ewes for a short period due to dehorning, disease treatment, etc. Such short-term separation was considered to be a high-intensity stress for the lambs. This study aimed to explore the effects of 1 h sensory separations on behaviors and the concentration of stress-related indicators of small-tailed Han lambs. Lambs were assigned to four groups: auditory, visual, and tactile separation (AVT) group; visual and tactile separation (VT) group; tactile separation (T) group; and control (C) group. Then they were separated from their mothers for one hour on postnatal days 14, 21, 28, 35 and 42. Results showed the separated lambs (AVT, VT, and T groups) spent less time lying down relaxing and more time looking around, exploring, vocalizing, and attempting to escape (P < 0.05). Lambs separated by lack of tactile contact only exhibited the most escaping and moving behavior. Twin-born lambs showed less moving, escaping, and vocalizing than single-born lambs (P < 0.05). The separation also led to a rise in serum globulin levels and a decrease in tetraiodothyronine. In conclusion, this study showed that temporary 1 h ewe-lamb separations could affect behaviors and the serum levels of stress indicators of lambs. The behavioral responses were more obvious when lambs were separated by lack of tactile contact only, and in single-born lambs. It can conclude that indicated that when lambs need to be temporarily separated from ewes in daily management production, it would be better to let them stay together with their littermates, and make them avoid hearing or seeing the ewes, such management may partially reduce the separation stress, thereby improving the welfare and breeding efficiency of sheep.
Collapse
Affiliation(s)
- Chengquan Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong 276000, China
| | - Min Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong 276000, China
| | - Fukuan Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong 276000, China
| | - Zhennan Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong 276000, China
| | - Xiyi Hu
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong 276000, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, Shandong 276012, China
| | - Hui Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong 276000, China,.
| | - Shenjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong 276000, China,.
| |
Collapse
|
11
|
Musco N, Pascon G, Addeo NF, Zarantoniello M, Lanzieri M, Olivotto I, Tulli F, Iervolino V, Amato R, Lombardi P, Bovera F. Cannabidiol can affect morphology, morphometry, enzymatic and microbial activity of rabbit digestive system. J Anim Sci 2024; 102:skae376. [PMID: 39661328 PMCID: PMC11683832 DOI: 10.1093/jas/skae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024] Open
Abstract
The present research aimed to evaluate the effects of the continuative dietary administration of a hemp oil extract containing cannabinoids (cannabidiol, CBD) on the macroscopic morphology, morphometry, and enzymatic activity of different intestinal tracts as well as on the production of short-chain fatty acids (SCFAs) in the cecum of growing rabbits. The research was performed on 16 rabbits randomly selected from 2 experimental groups (8 per group). In detail, 42 sixty-day-old New Zealand White × California rabbits (sex ratio 1:1, average weight 1621.3 ± 46.2 g) were homogeneously divided into 2 groups (21 animals/group), namely control and CBD. Both groups were fed the same commercial diet, but the CBD one was supplemented with 0.1 mL of hemp extract in coconut-based oil corresponding to 10 mg of CBD/animal/d. Up to 92 d of age (for 27 d), individual live weight and feed intake were measured weekly. At 92 d of age, 8 rabbits/group (sex ratio 1:1) were moved to a specialized slaughterhouse, and the gastrointestinal tract was separated from the carcass. Samples from 8 rabbits per dietary treatment were used for the histomorphological analysis of small and large intestines. In addition, duodenum, jejunum, ileum, and cecum were processed for enzymatic analysis. The caecal contents were used for the SCFAs determination. The administration of CBD did not affect feed intake and the final rabbits' whole body weight (P > 0.05), but some changes were detected in the gastrointestinal tract of the animals. CBD seemed to interfere with protein digestion, with a significantly lower activity of the enzymes related to peptides in the small intestine and a consequent increase of the fermentative activity of caecal microbiota. This effect, in combination with a general decrease of fermentative activity in the caecal content of rabbits submitted to CBD treatment, was responsible for a change in the SCFA proportion mainly regarding the reduction of butyrate production (P < 0.01) that resulted significant higher in CTR group compared to CBD. This last result is very important for intestinal health. Such fermentation activity modification was coupled with changes in the relative abundance of goblet cells in the colon. Overall, our findings suggest that a relatively long-term administration of CBD may affect digestion in rabbits, in particular at enzymatic and fermentative levels.
Collapse
Affiliation(s)
- Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Giulia Pascon
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mariarosaria Lanzieri
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Tulli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Valeria Iervolino
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Ruggero Amato
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
12
|
Xu X, Murphy LA. Fast and sensitive LC-MS/MS method for quantification of cannabinoids and their metabolites in plasma of cattle fed hemp. J Sep Sci 2024; 47:e2300630. [PMID: 37904320 DOI: 10.1002/jssc.202300630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
Hemp-based materials have gained interest as alternative feed ingredients for livestock. However, safety concerns arise regarding the transfer of cannabinoids from the plant to the animals. Addressing these concerns requires the use of methods capable of detecting and quantifying cannabinoids in livestock. In this study, a fast and sensitive method was developed for quantification of cannabinoids and cannabinoid metabolites in cattle plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction of cannabinoids from the plasma matrix was achieved by combining the Captiva Enhanced Matrix Removal-Lipid clean-up and salting-out assisted liquid-liquid extraction procedure. The developed method underwent validation using various analytical parameters, and the results demonstrated good accuracy, precision, specificity, and high sensitivity. The method was applied to real plasma samples obtained from cattle fed hemp for 2 weeks, and successfully detected various cannabinoids, including delta-9-tetrahydrocannabinol. Furthermore, the study revealed that 7-carboxy cannabidiol, a metabolite of cannabidiol, was the predominant cannabinoid present in the cattle plasma throughout the feeding period, which could remain detectable for weeks after the hemp feeding had ended.
Collapse
Affiliation(s)
- Xin Xu
- Pennsylvania Animal Diagnostic Laboratory System Toxicology Laboratory, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Lisa A Murphy
- Pennsylvania Animal Diagnostic Laboratory System Toxicology Laboratory, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| |
Collapse
|
13
|
Irawan A, Puerto-Hernandez GM, Ford HR, Busato S, Ates S, Cruickshank J, Ranches J, Estill CT, Trevisi E, Bionaz M. Feeding spent hemp biomass to lactating dairy cows: Effects on performance, milk components and quality, blood parameters, and nitrogen metabolism. J Dairy Sci 2024; 107:258-277. [PMID: 37690708 DOI: 10.3168/jds.2023-23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
The legalization of industrial hemp by the 2018 Farm Bill in the United States has driven a sharp increase in its cultivation, including for cannabinoid extraction. Spent hemp biomass (SHB), produced from the extraction of cannabinoids, can potentially be used as feed for dairy cows; however, it is still illegal to do so in the United States, according to the US Food and Drug Administration Center for Veterinary Medicine, due to the presence of cannabinoids and the lack of data on the effect on animals. To assess the safety of this byproduct as feed for dairy cows, late-lactation Jersey cows (245 ± 37 d in milk; 483 ± 38 kg body weight; 10 multiparous and 8 primiparous) received a basal total mixed ration (TMR) diet plus 13% alfalfa pellet (CON) or 13% pelleted SHB for 4 wk (intervention period [IP]) followed by 4 wk of withdrawal period (WP), where all cows received only the basal TMR during WP. The dry matter intake (DMI), body weight, body condition score, milk yield, milk components, and fatty acid profile, blood parameters, N metabolism, methane emission, and activity were measured. Results indicated that feeding SHB decreased DMI mainly due to the low palatability of the SHB pellet, as the cows consumed only 7.4% of the total TMR with 13.0% SHB pellet offered in the ration. However, milk yield was not affected during the IP and was higher than CON during the WP, leading to higher milk yield/DMI. Milk components were not affected, except for a tendency in decreased fat percentage. Milk fat produced by cows fed SHB had a higher proportion of oleate and bacteria-derived fatty acids than CON. The activity of the cows was not affected, except for a shorter overall lying time in SHB versus CON cows during the IP. Blood parameters related to immune function were not affected. Compared with CON, cows fed SHB had a lower cholesterol concentration during the whole experiment and higher β-hydroxybutyric acid during the WP, while a likely low-grade inflammation during the IP was indicated by higher ceruloplasmin and reactive oxidative metabolites. Other parameters related to liver health and inflammatory response were unaffected, except for a tendency for higher activity of alkaline phosphatase during IP and a lower activity of gamma-glutamyl transferase during WP in the SHB group versus CON. The bilirubin concentration was increased in cows fed SHB, suggesting a possible decrease in the clearance ability of the liver. Digestibility of the dry matter and protein and methane emission were not affected by feeding SHB. The urea, purine derivatives, and creatinine concentration in urine was unaffected, but cows fed SHB had higher N use efficiency and lower urine volume. Altogether, our data revealed a relatively low palatability of SHB affecting DMI with minimal biological effects, except for a likely low-grade inflammation, a higher N use efficiency, and a possible decrease in liver clearance. Overall, the data support the use of SHB as a safe feed ingredient for lactating dairy cows.
Collapse
Affiliation(s)
- Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Universitas Sebelas Maret, Surakarta, 57126 Central Java, Indonesia
| | | | - Hunter Robert Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Jenifer Cruickshank
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Juliana Ranches
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331.
| |
Collapse
|
14
|
Khamhan S, Tathong T, Phoemchalard C. The Effects of Fresh Hemp Leaf Supplementation ( Cannabis sativa) on the Physiological and Carcass Characteristics and Meat Quality in Transported Goats. Animals (Basel) 2023; 13:3881. [PMID: 38136918 PMCID: PMC10740800 DOI: 10.3390/ani13243881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Transportation stress adversely affects animal health, productivity, and meat quality. Bioactive plant compounds may alleviate transit stress in livestock. This study evaluated the effects of fresh hemp leaf supplementation on blood metabolites, performance, carcass traits, and meat quality in transported goats. Twenty male goats (15 ± 2.76 kgBW) were investigated, some were given a hemp supplement (n = 10) and the remaining goats were used as a control group (n = 10). The hemp group received 10 g/30 kg body weight of fresh leaves prior to transportation. Blood samples were analyzed before and after the 200 km journey. The goats were slaughtered after transit and the quality of the meat examined. In the controlled group, transportation increased neutrophils and electrolytes, but decreased lymphocytes and hemoglobin. In contrast in the hemp-supplemented group, the hemp maintained this animal blood parameters. Body weight and carcass yield, however, did not differ between the two groups. Hemp reduced meat redness at 1 h postmortem but had minimal effects on its pH, color, water holding capacity, tenderness, and texture after 24 h. However, hemp supplementation did alter the odor profiles between the two groups detected by electronic nose sensors. In conclusion, fresh hemp leaf supplementation maintained blood metabolites and had minor advantageous effects on meat quality in response to transportation stress in goats. Further investigation using hemp supplements shows potential to alleviate transit stress, although higher doses may be required in order to further enhance its benefits.
Collapse
Affiliation(s)
- Supawut Khamhan
- That Phanom College, Nakhon Phanom University, Nakhon Phanom 48110, Thailand
| | - Tanom Tathong
- Department of Food Technology, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Chirasak Phoemchalard
- Department of Agriculture, Mahidol University, Amnatcharoen Campus, Amnatcharoen 37000, Thailand;
| |
Collapse
|
15
|
Parker NB, Bionaz M, Ford HR, Irawan A, Trevisi E, Ates S. Assessment of spent hemp biomass as a potential ingredient in ruminant diet: nutritional quality and effect on performance, meat and carcass quality, and hematological parameters in finishing lambs. J Anim Sci 2022; 100:skac263. [PMID: 35953240 PMCID: PMC9584163 DOI: 10.1093/jas/skac263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spent hemp biomass (SHB), a byproduct of cannabinoid extraction from the production of industrial hemp has not been approved by FDA-CVM since its effects on animal health, performance, and product quality are unknown. Our objective was to investigate the effects of feeding two levels of SHB and a 4-wk withdrawal period on performance, carcass characteristic, meat quality, and hematological parameters in finishing lambs. A total of 35 weaned, Polypay male lambs kept in single pens were randomly assigned to five feeding treatments (n = 7) and fed diets containing either no SHB (CON) or SHB at 10% (LH1) or 20% (HH1) for 4 wk with 4 wk of clearing period from SHB, or SHB at 10% (LH2) or 20% (HH2) for 8 wk. Chemical analysis revealed SHB to have a nutritive quality similar to alfalfa with no mycotoxin, terpenes, or organic residuals as a result of the extraction process. Feed intake of lambs was negatively affected by 20% SHB in period 1 but not in period 2 where feed intake was the greatest in HH1 and LH2. In contrast, none of the performance data, including liveweight gains, were different across the groups and periods. In period 1, blood glucose, cholesterol, calcium, paraoxonase, and tocopherol were decreased by the level of SHB fed, while bilirubin and alkaline phosphatase (ALP) were increased. In period 2, the concentration in blood of urea, magnesium, bilirubin, ALP, and ferric reducing ability of the plasma (FRAP) were higher in LH2 and HH2 as compared with CON, while β-hydroxybutyrate was lower in HH2. Blood parameters related to liver health, kidney function, immune status, and inflammation were unaffected by feeding SHB. Most carcass and meat quality parameters did not differ across feeding groups either. Except carcass purge loss and meat cook loss were larger in lambs that were fed 20% SHB. Although lower feed intake of lambs that were fed 20% SHB initially in period 1 suggested SHB was not palatable to the lambs, increased feed intake at a lower level of inclusion at 10% in period 2 may point to a positive long-term effect of feeding SHB.
Collapse
Affiliation(s)
- Nathan B Parker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Hunter R Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza PC, Italy
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
16
|
Fallahi S, Bobak Ł, Opaliński S. Hemp in Animal Diets—Cannabidiol. Animals (Basel) 2022; 12:ani12192541. [PMID: 36230282 PMCID: PMC9559627 DOI: 10.3390/ani12192541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
In recent years, interest in hemp use has grown owing to its chemical and medicinal properties. Several parts of this plant, such as seeds, leaves, flowers, and stems are used in medicine, industry, and environmental preservation. Although there were legal restrictions on hemp exploitation in some countries due to the trace presence of THC as a psychoactive element, many countries have legalized it in recent years. Cannabidiol or CBD is a non-psychoactive phytocannabinoid that can activate the endocannabinoid system and its receptors in the central and peripheral nervous system in bodies of different species. Cannabidiol has anti-inflammatory, antioxidative, analgesic, and anti-depressant effects. This review investigates various aspects of cannabidiol use and its potential in animals and humans.
Collapse
Affiliation(s)
- Sepideh Fallahi
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence:
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Sebastian Opaliński
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|