1
|
Andraska EA, Denorme F, Kaltenmeier C, Arivudainabi A, Mihalko EP, Dyer M, Annarapu GK, Zarisfi M, Loughran P, Ozel M, Williamson K, Mota Alvidrez RI, Thomas K, Shiva S, Shea SM, Steinman RA, Campbell RA, Rosengart MR, Neal MD. Alterations in visible light exposure modulate platelet function and regulate thrombus formation. J Thromb Haemost 2025; 23:123-138. [PMID: 39299611 DOI: 10.1016/j.jtha.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Variations in light exposure are associated with changes in inflammation and coagulation. The impact of light spectra on venous thrombosis (VT) and arterial thrombosis is largely unexplored. OBJECTIVES To investigate the impact of altering light spectrum on platelet function in thrombosis. METHODS Wild-type C57BL/6J mice were exposed to ambient (micewhite, 400 lux), blue (miceblue, 442 nm, 1400 lux), or red light (micered, 617 nm, 1400 lux) with 12:12 hour light:dark cycle for 72 hours. After 72 hours of light exposure, platelet aggregation, activation, transcriptomic, and metabolomic changes were measured. The ability of released products of platelet activation to induce thrombosis-generating neutrophil extracellular trap formation was quantified. Subsequent thrombosis was measured using murine models of VT and stroke. To translate our findings to human patients, light-filtering cataract patients were evaluated over an 8-year period for rate of venous thromboembolism with multivariable logistic regression clustered by hospital. RESULTS Exposure to long-wavelength red light resulted in reduced platelet aggregation and activation. RNA-seq analysis demonstrated no significant transcriptomic changes between micered and micewhite. However, there were global metabolomic changes in platelets from micered compared with micewhite. Releasate from activated platelets resulted in reduced neutrophil extracellular trap formation. Micered also had reduced VT weight and brain infarct size following stroke. On subgroup analysis of cataract patients, patients with a history of cancer had a lower lifetime risk of venous thromboembolism after implantation with lenses that filter low-wavelength light. CONCLUSION Light therapy may be a promising approach to thrombus prophylaxis by specifically targeting the intersection between innate immune function and coagulation.
Collapse
Affiliation(s)
- Elizabeth A Andraska
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA.
| | - Frederik Denorme
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christof Kaltenmeier
- University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA; MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, USA
| | | | - Emily P Mihalko
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mitchell Dyer
- Division of Vascular and Endovascular Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gowtham K Annarapu
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohammadreza Zarisfi
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| | - Mehves Ozel
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelly Williamson
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Kimberly Thomas
- Vitalant Research Institute, Denver, Colorado, USA; Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sruti Shiva
- Division of Classical Hematology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan M Shea
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard A Steinman
- University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A Campbell
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew R Rosengart
- Division of Acute and Critical Care Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew D Neal
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Pistonesi DB, Belén F, Ruso JM, Centurión ME, Sica MG, Pistonesi MF, Messina PV. NIR-responsive nano-holed titanium alloy surfaces: a photothermally activated antimicrobial biointerface. J Mater Chem B 2024; 12:8993-9004. [PMID: 39145426 DOI: 10.1039/d4tb01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Among external stimuli-responsive therapy approaches, those using near infrared (NIR) light irradiation have attracted significant attention to treat bone-related diseases and bone tissue regeneration. Therefore, the development of metallic biomaterials sensitive to NIR stimuli is an important area of research in orthopaedics. In this study, we have generated in situ prism-shaped silver nanoparticles (p-AgNPs) in a biomorphic nano-holed TiO2 coating on a Ti6Al4V alloy (a-Ti6Al4V). Insertion of p-AgNPs does not disturb the periodically arranged sub-wavelength-sized unit cell on the a-Ti6Al4V dielectric structure, while they exacerbate its peculiar optical response, which results in a higher NIR reflectivity and high efficiency of NIR photothermal energy conversion suitable to bacterial annihilation. Together, these results open a promising path toward strategic bone therapeutic procedures, providing novel insights into precision medicine.
Collapse
Affiliation(s)
- Denise B Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Federico Belén
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and iMATUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenia Centurión
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - M Gabriela Sica
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
- Department of Health Sciences, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
| | - Marcelo F Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Paula V Messina
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Walski T, Grzeszczuk-Kuć K, Mehl J, Bohara R, Trochanowska-Pauk N, Detyna J, Komorowska M. Biphasic dose-response and effects of near-infrared photobiomodulation on erythrocytes susceptibility to oxidative stress in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112958. [PMID: 38875890 DOI: 10.1016/j.jphotobiol.2024.112958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The effect of simultaneous application of tert-butyl hydroperoxide (tBHP) and polychromatic near-infrared (NIR) radiation on bovine blood was examined to determine whether NIR light decreases the susceptibility of red blood cells (RBCs) to oxidative stress. The study assessed various exposure methods, wavelength ranges, and optical filtering types. Continuous NIR exposure revealed a biphasic response in cell-free hemoglobin changes, with antioxidative effects observed at low fluences and detrimental effects at higher fluences. Optimal exposure duration was identified between 60 s and 15 min. Protective effects were also tested across wavelengths in the range of 750-1100 nm, with all of them reducing hemolysis, notably at 750 nm, 875 nm, and 900 nm. Comparing broadband NIR and far-red light (750 nm) showed no significant difference in hemolysis reduction. Pulse-dosed NIR irradiation allowed safe increases in radiation dose, effectively limiting hemolysis at higher doses where continuous exposure was harmful. These findings highlight NIR photobiomodulation's potential in protecting RBCs from oxidative stress and will be helpful in the effective design of novel medical therapeutic devices.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Karolina Grzeszczuk-Kuć
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Joanna Mehl
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Natalia Trochanowska-Pauk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - Małgorzata Komorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
4
|
Trochanowska-Pauk N, Walski T, Bohara R, Mikolas J, Kubica K. Platelet Storage-Problems, Improvements, and New Perspectives. Int J Mol Sci 2024; 25:7779. [PMID: 39063021 PMCID: PMC11277025 DOI: 10.3390/ijms25147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage.
Collapse
Affiliation(s)
- Natalia Trochanowska-Pauk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D.Y. Patil Educational Society, Kolhapur 416006, India;
| | - Julia Mikolas
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Krystian Kubica
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
5
|
Li S, Wang Q, Duan X, Pei Z, He Z, Guo W, Han L. A glutathione-responsive PEGylated nanogel with doxorubicin-conjugation for cancer therapy. J Mater Chem B 2023; 11:11612-11619. [PMID: 38038224 DOI: 10.1039/d3tb01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The complexity, degradability, and stability of drug delivery systems are crucial factors for clinical application. Herein, a glutathione (GSH)-responsive polyethylene glycol (PEG)ylated nanogel conjugated with doxorubicin (Dox) was prepared based on a linker with disulfide bonds, PEG, and Dox using a one-pot method. FT-IR and UV-vis analyses confirmed that all raw materials were incorporated in the Dox-conjugated nanogel structure. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that the particle size of the Dox-conjugated nanogel was at the nanoscale and could be responsively disrupted in high GSH concentration. The in vitro accumulative Dox release rate from the nanogel reached 88% in PBS with 5 mg mL-1 GSH on day 4. Moreover, H22 cell viability and apoptosis experiments revealed that the nanogel effectively inhibited tumor cell growth. In vivo tracking and cell uptake experiments demonstrated that the nanogel accumulated and persisted in tumor tissues for 5 days and was distributed into cell nuclei at 6 h. Furthermore, H22-bearing mice experiments showed that the tumor size of the Dox-conjugated nanogel group was the smallest (287 mm3) compared to that of the free Dox (558 mm3) and 0.9% NaCl (2700 mm3) groups. Meanwhile, the body weight of mice as well as the H&E and TUNEL tissue section staining of organs and tumor tissues from the mice illustrated that the nanogel could significantly prevent side effects and induce tumor cell apoptosis. Taken together, compared with free Dox, the Dox-conjugated nanogel exhibited higher therapeutic efficacy and lower side effects in normal tissues, making it a potential novel nanomedicine for cancer.
Collapse
Affiliation(s)
- Shufen Li
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Qiang Wang
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| | - Xiao Duan
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, 046000, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Zhipeng He
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Wei Guo
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Lingna Han
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
6
|
Hepburn J, Williams-Lockhart S, Bensadoun RJ, Hanna R. A Novel Approach of Combining Methylene Blue Photodynamic Inactivation, Photobiomodulation and Oral Ingested Methylene Blue in COVID-19 Management: A Pilot Clinical Study with 12-Month Follow-Up. Antioxidants (Basel) 2022; 11:2211. [PMID: 36358582 PMCID: PMC9686966 DOI: 10.3390/antiox11112211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 virus was first recognized in late 2019 and remains a significant threat. We therefore assessed the use of local methylene blue photodynamic viral inactivation (MB-PDI) in the oral and nasal cavities, in combination with the systemic anti-viral, anti-inflammatory and antioxidant actions of orally ingested methylene blue (MB) and photobiomodulation (PBM) for COVID-19 disease. The proposed protocol leverages the separate and combined effects of MB and 660nm red light emitted diode (LED) to comprehensively address the pathophysiological sequelae of COVID-19. A total of eight pilot subjects with COVID-19 disease were treated in the Bahamas over the period June 2021-August 2021, using a remote care program that was developed for this purpose. Although not a pre-requisite for inclusion, none of the subjects had received any COVID-19 vaccination prior to commencing the study. Clinical outcome assessment tools included serial cycle threshold measurements as a surrogate estimate of viral load; serial online questionnaires to document symptom response and adverse effects; and a one-year follow-up survey to assess long-term outcomes. All subjects received MB-PDI to target the main sites of viral entry in the nose and mouth. This was the central component of the treatment protocol with the addition of orally ingested MB and/or PBM based on clinical requirements. The mucosal surfaces were irradiated with 660 nm LED in a continuous emission mode at energy density of 49 J/cm2 for PDI and 4.9 J/cm2 for PBM. Although our pilot subjects had significant co-morbidities, extremely high viral loads and moderately severe symptoms during the Delta phase of the pandemic, the response to treatment was highly encouraging. Rapid reductions in viral loads were observed and negative PCR tests were documented within a median of 4 days. These laboratory findings occurred in parallel with significant clinical improvement, mostly within 12-24 h of commencing the treatment protocol. There were no significant adverse effects and none of the subjects who completed the protocol required in-patient hospitalization. The outcomes were similarly encouraging at one-year follow-up with virtual absence of "long COVID" symptoms or of COVID-19 re-infection. Our results indicate that the protocols may be a safe and promising approach to challenging COVID-19 disease. Moreover, due its broad spectrum of activity, this approach has the potential to address the prevailing and future COVID-19 variants and other infections transmitted via the upper respiratory tract. Extensive studies with a large cohort are warranted to validate our results.
Collapse
Affiliation(s)
- Juliette Hepburn
- Luminnova Health, 34 Harbour Bay Plaza, East Bay Street, Nassau P.O. Box N-1081, Bahamas
| | | | - René Jean Bensadoun
- Centre De Haute Energie, Department of Oncology Radiology, 10 Boulevard Pasteur, 06000 Nice, France
| | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Vaile Benedetto XV, 6, 16132 Genoa, Italy
- Department of Restorative Dental Sciences, UCL-Eastman Dental Institute, Faculty of Medical Sciences, Rockefeller Building, London WC1E 6DE, UK
- Department of Oral Surgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
7
|
Photobiomodulation Literature Watch March 2022. Photobiomodul Photomed Laser Surg 2022. [DOI: 10.1089/photob.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro. PHOTONICS 2022. [DOI: 10.3390/photonics9050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The contact of blood with the bioincompatible membranes of the dialyzer, which is part of the extracorporeal circuit during hemodialysis (HD), causes upregulation of various cellular and non-cellular processes, including massive generation and release of reactive oxygen species (ROS), (which is one of the primary causes of anemia in chronic renal failure). We hypothesize that near-infrared (NIR) radiation possesses antioxidant properties and is considered to protect the red blood cell (RBC) membrane by enhancing its resilience to negative pressures. Our experimental setup consisted of an HD machine equipped with a dialyzer with a polyamide membrane; whole bovine blood was examined in vitro in blood-treated circulation. Blood samples were taken at 0, 5, 15, and 30 min during the HD therapy. We also assessed osmotic fragility, hematocrit, hemolysis, and oxidative stress as a concentration of reactive thiobarbituric acid substances (TBARS). Our results have shown that RBC membrane peroxidation increased significantly after 30 min of circulation, whereas the TBARS level in NIR-treated blood remained relatively steady throughout the experiment. The osmotic fragility of NIR-irradiated samples during dialysis was decreased compared to control samples. Our studies confirm that in vitro, blood photobiomodulation using NIR light diminishes oxidative damage during HD and can be considered a simultaneous pretreatment strategy for HD.
Collapse
|