1
|
Brizzolara S, Naudascher R, Rosti ME, Stocker R, Boffetta G, Mazzino A, Holzner M. Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills. Proc Natl Acad Sci U S A 2024; 121:e2311798121. [PMID: 38442164 PMCID: PMC10945856 DOI: 10.1073/pnas.2311798121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.
Collapse
Affiliation(s)
- Stefano Brizzolara
- Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH Zurich), ZürichCH-8039, Switzerland
- Biodiversity and Conservation Biology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf8903, Switzerland
| | - Robert Naudascher
- Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH Zurich), ZürichCH-8039, Switzerland
| | - Marco Edoardo Rosti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| | - Roman Stocker
- Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH Zurich), ZürichCH-8039, Switzerland
| | - Guido Boffetta
- Physics Department and National Institute of Nuclear Physics (INFN), Università degli Studi di Torino, Torino10125, Italy
| | - Andrea Mazzino
- Department of Civil, Chemical and Environmental Engineering (DICCA) and National Institute of Nuclear Physics (INFN), Università degli Studi di Genova, Genova16145, Italy
| | - Markus Holzner
- Biodiversity and Conservation Biology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf8903, Switzerland
- Environmental Microbiology Department, Swiss Federal Institute of Aquatic Scinence and Technology (EAWAG), Dübendorf8600, Switzerland
- Institute of Hydraulic Engineering and River Research (IWA), University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Hickl V, Pamu HH, Juarez G. Hydrodynamic Treadmill Reveals Reduced Rising Speeds of Oil Droplets Deformed by Marine Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14082-14089. [PMID: 37675846 DOI: 10.1021/acs.est.3c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In marine environments, microscopic droplets of oil can be transported over large distances in the water column. Bacterial growth on the droplets' surface can deform the oil-water interface to generate complex shapes and significantly enlarge droplets. Understanding the fate of spilled oil droplets requires bridging these length scales and determining how microscale processes affect the large-scale transport of oil. Here, we describe an experimental setup, the hydrodynamic treadmill, developed to keep rising oil droplets stationary in the lab frame for continuous and direct observation. Oil droplets with radii 10 < R < 100 μm were colonized and deformed by bacteria over several days before their effective rising speeds were measured. The rising speeds of deformed droplets were significantly slower than those of droplets without bacteria. This decrease in rising speed is understood by an increase in drag force and a decrease in buoyancy as a result of bio-aggregate formation at the droplet surface. Additionally, we found sinking bio-aggregate particles of oil and bacterial biofilms and quantified their composition using fluorescence microscopy. Our experiments can be adapted to further study the interactions between oil droplets and marine organisms and could significantly improve our understanding of the transport of hydrocarbons and complex aggregates.
Collapse
Affiliation(s)
- Vincent Hickl
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hima Hrithik Pamu
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Słomka J, Alcolombri U, Carrara F, Foffi R, Peaudecerf FJ, Zbinden M, Stocker R. Encounter rates prime interactions between microorganisms. Interface Focus 2023; 13:20220059. [PMID: 36789236 PMCID: PMC9912013 DOI: 10.1098/rsfs.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Properties of microbial communities emerge from the interactions between microorganisms and between microorganisms and their environment. At the scale of the organisms, microbial interactions are multi-step processes that are initiated by cell-cell or cell-resource encounters. Quantification and rational design of microbial interactions thus require quantification of encounter rates. Encounter rates can often be quantified through encounter kernels-mathematical formulae that capture the dependence of encounter rates on cell phenotypes, such as cell size, shape, density or motility, and environmental conditions, such as turbulence intensity or viscosity. While encounter kernels have been studied for over a century, they are often not sufficiently considered in descriptions of microbial populations. Furthermore, formulae for kernels are known only in a small number of canonical encounter scenarios. Yet, encounter kernels can guide experimental efforts to control microbial interactions by elucidating how encounter rates depend on key phenotypic and environmental variables. Encounter kernels also provide physically grounded estimates for parameters that are used in ecological models of microbial populations. We illustrate this encounter-oriented perspective on microbial interactions by reviewing traditional and recently identified kernels describing encounters between microorganisms and between microorganisms and resources in aquatic systems.
Collapse
Affiliation(s)
- Jonasz Słomka
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Uria Alcolombri
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Francesco Carrara
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Riccardo Foffi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - François J. Peaudecerf
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Matti Zbinden
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Zhu Z, Merlin F, Yang M, Lee K, Chen B, Liu B, Cao Y, Song X, Ye X, Li QK, Greer CW, Boufadel MC, Isaacman L, Zhang B. Recent advances in chemical and biological degradation of spilled oil: A review of dispersants application in the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129260. [PMID: 35739779 DOI: 10.1016/j.jhazmat.2022.129260] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Growing concerns over the risk of accidental releases of oil into the marine environment have emphasized our need to improve both oil spill preparedness and response strategies. Among the available spill response options, dispersants offer the advantages of breaking oil slicks into small oil droplets and promoting their dilution, dissolution, and biodegradation within the water column. Thus dispersants can reduce the probability of oil slicks at sea from reaching coastal regions and reduce their direct impact on mammals, sea birds and shoreline ecosystems. To facilitate marine oil spill response operations, especially addressing spill incidents in remote/Arctic offshore regions, an in-depth understanding of the transportation, fate and effects of naturally/chemically dispersed oil is of great importance. This review provides a synthesis of recent research results studies related to the application of dispersants at the surface and in the deep sea, the fate and transportation of naturally and chemically dispersed oil, and dispersant application in the Arctic and ice-covered waters. Future perspectives have been provided to identify the research gaps and help industries and spill response organizations develop science-based guidelines and protocols for the application of dispersants application.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | | | - Min Yang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Xing Song
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Qingqi K Li
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Lisa Isaacman
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|