1
|
Zhang X, Shao W, Gao Y, Wang X. Macrophage polarization-mediated PKM2/mTORC1/YME1L signaling pathway activation in fibrosis associated with Cardiorenal syndrome. Cell Signal 2025; 131:111664. [PMID: 39961408 DOI: 10.1016/j.cellsig.2025.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Cardiorenal syndrome (CRS) is a complex condition characterized by the interplay between cardiac and renal dysfunction, often culminating in renal fibrosis. The role of macrophage polarization and its downstream effects in CRS-induced renal fibrosis remains an area of active investigation. METHODS Single-cell RNA sequencing (scRNA-seq) and immune infiltration analyses were employed to identify key immune cells and genes involved in renal fibrosis in CRS. Meta-analysis and pseudo-time analysis were conducted to validate the functional relevance of these genes. Functional studies utilizing CRISPR/Cas9 gene editing and lentiviral vectors assessed macrophage polarization and epithelial-to-mesenchymal transition (EMT). In vivo, a CRS mouse model was established, and fibrosis progression was tracked using histological and imaging methods. RESULTS The PKM2/mTORC1/YME1L signaling axis was identified as a critical pathway driving renal fibrosis, mediated by HIF-1α-induced M1 macrophage polarization. Inhibition of HIF-1α significantly alleviated renal fibrosis by restricting M1 polarization and suppressing the PKM2/mTORC1/YME1L axis. Co-culture models further demonstrated the involvement of EMT and metabolic reprogramming in affected cells. CONCLUSION Targeting the HIF-1α signaling pathway offers a promising therapeutic strategy for renal fibrosis by modulating macrophage polarization and the PKM2/mTORC1/YME1L axis.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| | - Wen Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yun Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xiaojun Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
2
|
Jiang J, Liu F, Cui D, Xu C, Chi J, Yan T, Guo F. Novel molecular mechanisms of immune evasion in hepatocellular carcinoma: NSUN2-mediated increase of SOAT2 RNA methylation. Cancer Commun (Lond) 2025. [PMID: 40227950 DOI: 10.1002/cac2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a deadly malignancy known for its ability to evade immune surveillance. NOP2/Sun RNA methyltransferase family member 2 (NSUN2), an RNA methyltransferase involved in carcinogenesis, has been associated with immune evasion and energy metabolism reprogramming. This study aimed to examine the molecular mechanisms underlying the involvement of NSUN2 in immune evasion and metabolic reprogramming of HCC. METHODS Single-cell transcriptomic sequencing was applied to examine cellular composition changes, particularly immune cell dynamics, in HCC and adjacent normal tissues. Bulk RNA-seq and proteomics identified key genes and proteins. Methylation sequencing and methylated RNA immunoprecipitation (MeRIP) were carried out to characterize the role of NSUN2 in 5-methylcytosine (m5C) modification of sterol O-acyltransferase 2 (SOAT2). Clinical samples from 30 HCC patients were analyzed using reverse transcription-quantitative polymerase chain reaction and Western blotting. Gene expression was manipulated using CRISPR/Cas9 and lentiviral vectors. In vitro co-culture models and metabolomics were used to study HCC cell-T cell interactions, energy metabolism, and immune evasion. Tumor growth in an orthotopic mouse model was monitored by bioluminescence imaging, with subsequent measurements of tumor weight, volume, and immunohistochemical staining. RESULTS Single-cell transcriptomic analysis identified a marked increase in malignant cells in HCC tissues. Cell communication analysis indicated that tumor cells might promote cancer progression by evading immune clearance. Multi-omics analyses identified NSUN2 as a key regulator in HCC development. MeRIP confirmed that NSUN2 facilitated the m5C modification of SOAT2. Analysis of human HCC tissue samples demonstrated pronounced upregulation of NSUN2 and SOAT2, along with elevated m5C levels in HCC tissues. In vitro experiments uncovered that NSUN2 augmented the reprogramming of energy metabolism and repressed the activity and cytotoxicity of CD8+ T cells, contributing to immune evasion. In vivo studies further substantiated the role of NSUN2 in fostering immune evasion and tumor formation of HCC by modulating the m5C modification of SOAT2. CONCLUSIONS The findings highlight the critical role of NSUN2 in driving HCC progression through the regulation of m5C modification on SOAT2. These findings present potential molecular markers for HCC diagnosis and therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jinhua Jiang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Feng Liu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Dan Cui
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Caixia Xu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Jiachang Chi
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Tinghua Yan
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
3
|
Deng M, Xie P, Xue H, Chen Q, Zhou Y, Ming J, Ma Y, Liu J, Huang H. Decellularized tissue matrices hydrogels functionalized with extracellular vesicles promote macrophage reprogramming and neural stem cell differentiation for spinal cord injury repair. J Nanobiotechnology 2025; 23:139. [PMID: 40001048 PMCID: PMC11853540 DOI: 10.1186/s12951-025-03152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the application of decellularized tissue matrices (DSCM) hydrogels functionalized with extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) for spinal cord injury (SCI) treatment. The primary focus is on how these composites influence macrophage reprogramming and neural stem cell (NSC) differentiation by modulating Slamf9 expression. MSC-derived EVs were successfully isolated, and DSCM hydrogels were prepared from porcine spinal cords. The composite material, EVs derived from MSCs (DSCM@EVs), was constructed and applied to a mouse SCI model, showing significant enhancement in NSC differentiation and axonal growth, thereby alleviating SCI. Bioinformatics and in vitro cell experiments revealed that DSCM@EVs promote the reprogramming of M1 macrophages to the M2 phenotype, reducing inflammatory responses and facilitating NSC differentiation. RNA-seq analysis identified Slamf9 as a key regulatory gene, with its suppression linked to the observed therapeutic effects. This novel approach demonstrates the potential of DSCM@EVs in SCI repair by modulating the inflammatory environment and promoting neural regeneration, offering a promising strategy for treating SCI and potentially other inflammatory neurological disorders.
Collapse
Affiliation(s)
- Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ping Xie
- Department of Chinese Traditional Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Hongyang Xue
- The First Clinical College of Wuhan University, Wuhan, 430060, China
| | - Qing Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianghua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junqi Liu
- Department of Radiation Oncology, The First of Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, 570311, China.
| |
Collapse
|
4
|
Sun Q, Li T, Wei Z, Ye Z, Zhao X, Jing J. Integrating transcriptomic data and digital pathology for NRG-based prediction of prognosis and therapy response in gastric cancer. Ann Med 2024; 56:2426758. [PMID: 39527470 PMCID: PMC11556273 DOI: 10.1080/07853890.2024.2426758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cancer is characterized by its ability to resist cell death, and emerging evidence suggests a potential correlation between non-apoptotic regulated cell death (RCD), tumor progression, and therapy response. However, the prognostic significance of non-apoptotic RCD-related genes (NRGs) and their relationships with immune response in gastric cancer (GC) remain unclear. METHODS In this study, RNA-seq gene expression and clinical information of GC patients were acquired from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Cox and LASSO regression analyses were used to construct the NRG signature. Moreover, we developed a deep learning model based on ResNet50 to predict the NRG signature from digital pathology slides. The expression of signature hub genes was validated using real-time quantitative PCR and single-cell RNA sequencing data. RESULTS We identified 13 NRGs as signature genes for predicting the prognosis of patients with GC. The high-risk group, characterized by higher NRG scores, demonstrated a shorter overall survival rate, increased immunosuppressive cell infiltration, and immune dysfunction. Moreover, associations were observed between the NRG signature and chemotherapeutic drug responsiveness, as well as immunotherapy effectiveness in GC patients. Furthermore, the deep learning model effectively stratified GC patients based on the NRG signature by leveraging morphological variances, showing promising results for the classification of GC patients. Validation experiments demonstrated that the expression level of SERPINE1 was significantly upregulated in GC, while the expression levels of GPX3 and APOD were significantly downregulated. CONCLUSION The NRG signature and its deep learning model have significant clinical implications, highlighting the importance of individualized treatment strategies based on GC subtyping. These findings provide valuable insights for guiding clinical decision-making and treatment approaches for GC.
Collapse
Affiliation(s)
- Qiuyan Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Zheng Wei
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhiyi Ye
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Razavi Z, Soltani M, Pazoki-Toroudi H, Dabagh M. Microfluidic systems for modeling digestive cancer: a review of recent progress. Biomed Phys Eng Express 2024; 10:052002. [PMID: 39142294 DOI: 10.1088/2057-1976/ad6f15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Purpose. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.Methods. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.Results. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.Conclusion. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K N Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | | | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, WI 53211, United States of America
| |
Collapse
|
6
|
Jiang P, Zhu X, Jiang Y, Li H, Luo Q. Targeting JUNB to modulate M2 macrophage polarization in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167194. [PMID: 38663490 DOI: 10.1016/j.bbadis.2024.167194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 06/17/2024]
Abstract
Preeclampsia (PE) is a complex disorder affecting pregnant women, leading to significant maternal and fetal morbidity and mortality. Understanding the cellular dynamics and molecular mechanisms underlying PE is crucial for developing effective therapeutic strategies. This study utilized single-cell RNA sequencing (scRNA-seq) to delineate the cellular landscape of the placenta in PE, identifying 11 distinct cell subpopulations, with macrophages playing a pivotal role in mediating cell-cell communication. Specifically, the transcription factor JUNB was found to be a key gene in macrophages from PE samples, influencing the interaction between macrophages and both epithelial and endothelial cells. Functional experiments indicated that interference with JUNB expression promoted macrophage polarization towards an M2 phenotype, which facilitated trophoblast invasion, migration, and angiogenesis. Mechanistically, JUNB regulated the MIIP/PI3K/AKT pathway, as evidenced by gene expression analysis following JUNB knockdown. The study further demonstrated that targeting JUNB could activate the PI3K/AKT pathway by transcriptionally activating MIIP, thus promoting M2 polarization and potentially delaying the onset of PE. These findings present new insights into the pathogenesis of PE and suggest a novel therapeutic approach by modulating macrophage polarization.
Collapse
Affiliation(s)
- Peiyue Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Hetong Li
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China.
| |
Collapse
|
7
|
Guo M, Hu P, Xie J, Tang K, Hu S, Sun J, He Y, Li J, Lu W, Liu H, Liu M, Yi Z, Peng S. Remodeling the immune microenvironment for gastric cancer therapy through antagonism of prostaglandin E2 receptor 4. Genes Dis 2024; 11:101164. [PMID: 38560505 PMCID: PMC10980949 DOI: 10.1016/j.gendis.2023.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 04/04/2024] Open
Abstract
Gastric cancer is highly prevalent among digestive tract tumors. Due to the intricate nature of the gastric cancer immune microenvironment, there is currently no effective treatment available for advanced gastric cancer. However, there is promising potential for immunotherapy targeting the prostaglandin E2 receptor subtype 4 (EP4) in gastric cancer. In our previous study, we identified a novel small molecule EP4 receptor antagonist called YY001. Treatment with YY001 alone demonstrated a significant reduction in gastric cancer growth and inhibited tumor metastasis to the lungs in a mouse model. Furthermore, administration of YY001 stimulated a robust immune response within the tumor microenvironment, characterized by increased infiltration of antigen-presenting cells, T cells, and M1 macrophages. Additionally, our research revealed that YY001 exhibited remarkable synergistic effects when combined with the PD-1 antibody and the clinically targeted drug apatinib, rather than fluorouracil. These findings suggest that YY001 holds great promise as a potential therapeutic strategy for gastric cancer, whether used as a standalone treatment or in combination with other drugs.
Collapse
Affiliation(s)
- Mengmeng Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Pan Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiayi Xie
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kefu Tang
- Prenatal Diagnosis Center, Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Shixiu Hu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialiang Sun
- Fengxian Hospital Affiliated to Southern Medical University, Shanghai 201400, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Li
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| |
Collapse
|
8
|
Lai A, Sun J, Dai Z, Guo L, Tao D, Li H, Chen B, Zhou R. Unraveling IGFBP3-mediated m6A modification in fracture healing. Pathol Res Pract 2024; 255:155220. [PMID: 38432050 DOI: 10.1016/j.prp.2024.155220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND This study investigates the role of IGFBP3-mediated m6A modification in regulating the miR-23a-3p/SMAD5 axis and its impact on fracture healing, aiming to provide insights into potential therapeutic targets. METHODS Utilizing fracture-related datasets, we identified m6A modification-related mRNA and predicted miR-23a-3p as a regulator of SMAD5. We established a mouse fracture healing model and conducted experiments, including Micro-CT, RT-qPCR, Alizarin Red staining, and Alkaline phosphatase (ALP) staining, to assess gene expression and osteogenic differentiation. RESULTS IGFBP3 emerged as a crucial player in fracture healing, stabilizing miR-23a-3p through m6A modification, leading to SMAD5 downregulation. This, in turn, inhibited osteogenic differentiation and delayed fracture healing. Inhibition of IGFBP3 partially reversed through SMAD5 inhibition, restoring osteogenic differentiation and fracture healing in vivo. CONCLUSION The IGFBP3/miR-23a-3p/SMAD5 axis plays a pivotal role in fracture healing, highlighting the relevance of m6A modification. IGFBP3's role in stabilizing miR-23a-3p expression through m6A modification offers a potential therapeutic target for enhancing fracture healing outcomes.
Collapse
Affiliation(s)
- Aining Lai
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Junjian Sun
- Section Ⅴ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 31300, PR China
| | - Zhiyuan Dai
- Thoracic surgey, the 72nd Army Hospital of PLA, Huzhou 313000, PR China
| | - Long Guo
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Degang Tao
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Haitang Li
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Bin Chen
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China.
| | - Rong Zhou
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China.
| |
Collapse
|
9
|
Zhao H, Jiang R, Zhang C, Feng Z, Wang X. The regulatory role of cancer stem cell marker gene CXCR4 in the growth and metastasis of gastric cancer. NPJ Precis Oncol 2023; 7:86. [PMID: 37679408 PMCID: PMC10484911 DOI: 10.1038/s41698-023-00436-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) are increasingly used for screening genes involved in carcinogenesis due to their capacity for dissecting cellular heterogeneity. This study aims to reveal the molecular mechanism of the cancer stem cells (CSCs) marker gene CXCR4 in gastric cancer (GC) growth and metastasis through scRNA-seq combined with bulk RNA-seq. GC-related scRNA-seq data were downloaded from the GEO database, followed by UMAP cluster analysis. Non-malignant cells were excluded by the K-means algorithm. Bulk RNA-seq data and clinical sample information were downloaded from the UCSC Xena database. GO and KEGG pathway analyses validated the correlation between genes and pathways. In vitro and in vivo functional assays were used to examine the effect of perturbed CXCR4 on malignant phenotypes, tumorigenesis, and liver metastasis. A large number of highly variable genes were identified in GC tissue samples. The top 20 principal components were selected, and the cells were clustered into 6 cell types. The C4 cell cluster from malignant epithelial cells might be CSCs. CXCR4 was singled out as a marker gene of CSCs. GC patients with high CXCR4 expression had poor survival. Knockdown of CXCR4 inhibited the malignant phenotypes of CSCs in vitro and curtailed tumorigenesis and liver metastasis in nude mice. CSC marker gene CXCR4 may be a key gene facilitating malignant phenotypes of CSCs, which thus promotes tumor growth and liver metastasis of GC.
Collapse
Affiliation(s)
- Hongying Zhao
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, 221000, PR China.
| | - Rongke Jiang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, 221000, PR China
| | | | | | - Xue Wang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, 221000, PR China
| |
Collapse
|
10
|
Zhao Z, Mak TK, Shi Y, Li K, Huo M, Zhang C. Integrative analysis of cancer-associated fibroblast signature in gastric cancer. Heliyon 2023; 9:e19217. [PMID: 37809716 PMCID: PMC10558323 DOI: 10.1016/j.heliyon.2023.e19217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Background CAFs regulate the signaling of GC cells by promoting their migration, invasion, and proliferation and the function of immune cells as well as their location and migration in the TME by remodeling the extracellular matrix (ECM). This study explored the understanding of the heterogeneity of CAFs in TME and laid the groundwork for GC biomarker and precision treatment development. Methods The scRNA-seq and bulk RNA-seq datasets were obtained from GEO and TCGA. The prognostic significance of various CAFs subtypes was investigated using ssGSEA combined with Kaplan-Meier analysis. POSTN expression in GC tissues and CAFs was detected using immunohistochemistry, immunofluorescence, and Western blotting. Differential expression analysis identified the differentially expressed genes (DEGs) between normal and tumor samples in TCGA-STAD. Pearson correlation analysis identified DEGs associated with adverse prognosis CAF subtype, and univariate Cox regression analysis determined prognostic genes associated with CAFs. LASSO regression analysis and Multivariate Cox regression were used to build a prognosis model for CAFs. Results We identified five CAFs subtypes in GC, with the CAF_0 subtype associated with poor prognosis. The abundance of CAF_0 correlated with T stage, clinical stage, histological type, and immune cell infiltration levels. Periostin (POSTN) exhibited increased expression in both GC tissues and CAFs and was linked to poor prognosis in GC patients. Through LASSO and multivariate Cox regression analysis, three genes (CXCR4, MATN3, and KIF24) were selected to create the CAFs-score. We developed a nomogram to facilitate the clinical application of the CAFs-score. Notably, the CAFs signature showed significant correlations with immune cells, stromal components, and immunological scores, suggesting its pivotal role in the tumor microenvironment (TME). Furthermore, CAFs-score demonstrated prognostic value in assessing immunotherapy outcomes, highlighting its potential as a valuable biomarker to guide therapeutic decisions. Conclusion CAF_0 subtype in TME is the cause of poor prognosis in GC patients. Furthermore, CAFs-score constructed from the CAF_0 subtype can be used to determine the clinical prognosis, immune infiltration, clinicopathological characteristics, and assessment of personalized treatment of GC patients.
Collapse
Affiliation(s)
- Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuntao Shi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kuan Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Artificial intelligence for prediction of response to cancer immunotherapy. Semin Cancer Biol 2022; 87:137-147. [PMID: 36372326 DOI: 10.1016/j.semcancer.2022.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Artificial intelligence (AI) indicates the application of machines to imitate intelligent behaviors for solving complex tasks with minimal human intervention, including machine learning and deep learning. The use of AI in medicine improves health-care systems in multiple areas such as diagnostic confirmation, risk stratification, analysis, prognosis prediction, treatment surveillance, and virtual health support, which has considerable potential to revolutionize and reshape medicine. In terms of immunotherapy, AI has been applied to unlock underlying immune signatures to associate with responses to immunotherapy indirectly as well as predict responses to immunotherapy responses directly. The AI-based analysis of high-throughput sequences and medical images can provide useful information for management of cancer immunotherapy considering the excellent abilities in selecting appropriate subjects, improving therapeutic regimens, and predicting individualized prognosis. In present review, we aim to evaluate a broad framework about AI-based computational approaches for prediction of response to cancer immunotherapy on both indirect and direct manners. Furthermore, we summarize our perspectives about challenges and opportunities of further AI applications on cancer immunotherapy relating to clinical practicability.
Collapse
|
12
|
Tian R, Sun Y, Han X, Wang J, Gu H, Wang W, Liang L. Identification and validation of prognostic autophagy-related genes associated with immune microenvironment in human gastric cancer. Aging (Albany NY) 2022; 14:7617-7634. [PMID: 36173625 PMCID: PMC9550254 DOI: 10.18632/aging.204313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Autophagy-related genes (ATGs) play critical roles in tumorigenesis and progression in gastric cancer (GC). The present study aimed to identify immune-based prognostic ATGs and verify their functions in tumor immune microenvironment (TIME) in GC. Macrophage infiltration was found to negatively correlate with prognosis in GC patients. After stratifying by infiltration levels of macrophages, we screened The Cancer Genome Atlas and Human Autophagy Database to identify the differentially expressed ATGs (DE-ATGs). Of 1,433 differentially expressed genes between the two groups, seven genes qualified as DE-ATGs. Of these, CXCR4, DLC1, and MAP1LC3C, exhibited strong prognostic prediction ability in Kaplan-Meier survival–log-rank test. High expression of these genes correlated with increased occurrence of advanced grade 3 tumors and poor prognoses. Furthermore, GSEA indicated that they were significantly associated with oncogenic and immune-related pathways. The comprehensive evaluation of TIME via GEPIA, ESTIMATE, CIBERSORT, and TIMER suggested that the three DE-ATGs were closely associated with immune condition, both in terms of immune cells and immune scores. Thus, the outcome of this study may aid in better understanding of the ATGs and their interaction with the immune microenvironment, which would allow the development of novel inhibitors, personalized treatment, and immunotherapy in gastric cancer.
Collapse
Affiliation(s)
- Ruyue Tian
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Ya Sun
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Xuedi Han
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Jiajun Wang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Hongli Gu
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Wenhai Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Lei Liang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| |
Collapse
|
13
|
Current Status of 68Ga-Pentixafor in Solid Tumours. Diagnostics (Basel) 2022; 12:diagnostics12092135. [PMID: 36140541 PMCID: PMC9497673 DOI: 10.3390/diagnostics12092135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Chemokine receptor CXCR4 is overexpressed in neoplasms and its expression is related to tumour invasion, metastasis and aggressiveness. 68Ga-Pentixafor is used to non-invasively image the expression of CXCR4 in tumours and has been widely used in haematological malignancies. Recent evidence shows that therapies targeting CXCR4 can increase the chemosensitivity of the tumour as well as inhibit tumour metastasis and aggressiveness. 68Ga-Pentixafor has shown promise as an elegant radiotracer to aid in the selection of patients whose tumours demonstrate CXCR4 overexpression and who therefore may benefit from novel therapies targeting CXCR4. In addition, its therapeutic partners 177Lu- and 90Y-Pentixather have been investigated in the treatment of patients with advanced haematological malignancies, and initial studies have shown a good treatment response in metabolically active lesions. 68Ga-Pentixafor in solid tumours complements 18F-FDG by providing prognostic information and selecting patients who may benefit from therapies targeting CXCR4. This review summarises the available literature on the potential applications of 68Ga-Pentixafor in solid tumours.
Collapse
|
14
|
Wei Y, Zhang J, Fan X, Zheng Z, Jiang X, Chen D, Lu Y, Li Y, Wang M, Hu M, Du Q, Yang L, Li H, Xiao Y, Li Y, Jin J, Wang D, Yuan X, Li Q. Immune Profiling in Gastric Cancer Reveals the Dynamic Landscape of Immune Signature Underlying Tumor Progression. Front Immunol 2022; 13:935552. [PMID: 35874784 PMCID: PMC9304688 DOI: 10.3389/fimmu.2022.935552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The profiling of the tumor immune microenvironment (TIME) is critical for guiding immunotherapy strategies. However, how the composition of the immune landscape affects the tumor progression of gastric cancer (GC) is ill-defined. Here, we used mass cytometry to perform simultaneous in-depth immune profiling of the tumor, adjacent tissues, and blood cells from GC patients and revealed a unique GC tumor-immune signature, where CD8+ T cells were present at a lower frequency in tumor tissues compared to adjacent tissues, whereas regulatory T cells and tumor-associated macrophages (TAMs) were significantly increased, indicating strong suppressive TIME in GC. Incorporated with oncogenic genomic traits, we found that the unique immunophenotype was interactively shaped by a specific GC gene signature across tumor progression. Earlier-stage GC lesions with IFN signaling enrichment harbored significantly altered T-cell compartments while advanced GC featured by metabolism signaling activation was accumulated by TAMs. Interestingly, PD-1 expression on CD8+ T cells was relatively higher in earlier-stage GC patients, indicating that these patients may derive more benefits from PD-1 inhibitors. The dynamic properties of diverse immune cell types revealed by our study provide new dimensions to the immune landscape of GC and facilitate the development of novel immunotherapy strategies for GC patients.
Collapse
Affiliation(s)
- Yuhan Wei
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueke Fan
- Gastroenterology Department, Jincheng People’s Hospital, Jincheng, China
| | - Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Jiang
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Yingrui Li
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Min Hu
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
- Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Qi Du
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Liuting Yang
- Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yongfu Li
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiangtao Jin
- Department of Intervention Therapy, Zezhou People’s Hospital, Jincheng, China
| | - Deying Wang
- Department of Technology Innovation, China National Nuclear Corporation (CNNC) Hexin Information Technology (Beijing) Co., Ltd., Beijing, China
| | - Xiangliang Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiangliang Yuan, ; Qin Li,
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
- *Correspondence: Xiangliang Yuan, ; Qin Li,
| |
Collapse
|