1
|
Zhu L, Tang L, Zhang K, Nie H, Gou X, Kong X, Deng W. Genetic and Epigenetic Adaptation Mechanisms of Sheep Under Multi-Environmental Stress Environment. Int J Mol Sci 2025; 26:3261. [PMID: 40244095 PMCID: PMC11989891 DOI: 10.3390/ijms26073261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Sheep (Ovis aries), domesticated from wild Asian mouflon ~10,000 years ago, are an important livestock species adapted to various ecological environments. Recent advancements in high-throughput sequencing and global environmental databases have facilitated the exploration of genetic-environmental associations, uncovering the genetic and epigenetic mechanisms behind sheep's adaptation to multiple environments. Studies show that HIF-1α and EPAS1 enhance high-altitude adaptation via hypoxic stress regulation; UCP1 contributes to cold adaptation through non-shivering thermogenesis; SLC4A4 and GPX3 increase drought resistance by regulating renal water reabsorption; and SOCS2 likely plays a role in metabolic and stress response regulation. Additionally, sheep adapt to temperature, drought, and environmental stress through DNA methylation, transcriptional regulation (e.g., SOD1, GPX4), heat shock proteins (e.g., HSP70), and metabolic pathways (e.g., UCP1). These findings offer valuable insights for improving sheep breeding and genetic enhancement. This review summarizes the mechanisms of adaptation to high altitude, cold, heat, drought, and comprehensive climate stress.
Collapse
Affiliation(s)
- Li Zhu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.); zero-- (L.T.)
| | - Lin Tang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.); zero-- (L.T.)
| | - Kang Zhang
- School of Animal Science and Technology, Foshan University, Foshan 528231, China; (K.Z.); (H.N.); (X.G.)
| | - Hongyu Nie
- School of Animal Science and Technology, Foshan University, Foshan 528231, China; (K.Z.); (H.N.); (X.G.)
| | - Xiao Gou
- School of Animal Science and Technology, Foshan University, Foshan 528231, China; (K.Z.); (H.N.); (X.G.)
| | - Xiaoyan Kong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.); zero-- (L.T.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.); zero-- (L.T.)
| |
Collapse
|
2
|
Li Y, Liu H, Liu N, Chen L, Liu R. Comprehensive analysis reveals the prognostic and immunological role of PSMD13 in hepatocellular carcinoma. Mamm Genome 2025; 36:317-330. [PMID: 39738579 PMCID: PMC11880097 DOI: 10.1007/s00335-024-10097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Immune cell infiltration in liver hepatocellular carcinoma (LIHC) is promising for immunotherapy. However, effective predictive markers to accurately predict a tumour's immune status are lacking. PSMD13, a native component of the 26 S proteasome subunit involved in intracellular metabolism, has an unclear association with cancer and immunity. Using bioinformatics analysis of data from the TCGA, we investigated the expression patterns, prognostic values, gene functions, and tumour immune relationships of PSMD13 in LIHC. We developed a prognostic model that incorporates PSMD13 for LIHC and validated the biological functions of PSMD13 in LIHC cells. Furthermore, we analysed the associations between PSMD13 expression and the tumour immune markers CD206 and CD8 in 101 paired liver tissues using immunohistochemistry. PSMD13 was upregulated in LIHC and served as a prognostic biomarker of LIHC. The knockdown of PMSD13 significantly affected the proliferation, migration, and colony formation of LIHC cells. PSMD13 was closely associated with the infiltration of M2 macrophages and the expression of various tumour immune checkpoints. Our study revealed that PSMD13 is a crucial component contributing to the malignant behaviour of LIHC, indicating its essential role in both the prognosis and potential immune microenvironment profile of LIHC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Prognosis
- Biomarkers, Tumor/genetics
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Cell Proliferation
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- CD8 Antigens/metabolism
- CD8 Antigens/genetics
- Female
- Cell Movement/genetics
- Male
- Macrophages/immunology
- Macrophages/metabolism
- Computational Biology/methods
- Membrane Glycoproteins
- Receptors, Immunologic
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Gastroenterology Department, The Fourth Hospital of Changsha, Changsha, Hunan, 410017, China
| | - Honghui Liu
- Department of Gastroenterology Department, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
3
|
Lei Q, Zhang S, Wang J, Qi C, Liu J, Cao D, Li F, Han H, Liu W, Li D, Tang C, Zhou Y. Genome-wide association studies of egg production traits by whole genome sequencing of Laiwu Black chicken. Poult Sci 2024; 103:103705. [PMID: 38598913 PMCID: PMC11636908 DOI: 10.1016/j.psj.2024.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Compared to high-yield commercial laying hens, Chinese indigenous chicken breeds have poor egg laying capacity due to the lack of intensive selection. However, as these breeds have not undergone systematic selection, it is possible that there is a greater abundance of genetic variations related to egg laying traits. In this study, we assessed 5 egg number (EN) traits at different stages of the egg-laying period: EN1 (from the first egg to 23 wk), EN2 (from 23 to 35 wk), EN3 (from 35 to 48 wk), EN4 (from the first egg to 35 wk), and EN5 (from the first egg to 48 wk). To investigate the molecular mechanisms underlying egg number traits in a Chinese local chicken breed, we conducted a genome-wide association study (GWAS) using data from whole-genome sequencing (WGS) of 399 Laiwu Black chickens. We obtained a total of 3.01 Tb of raw data with an average depth of 7.07 × per individual. A total of 86 genome-wide suggestive or significant single-nucleotide polymorphisms (SNP) contained within a set of 45 corresponding candidate genes were identified and found to be associated with stages EN1-EN5. The genes vitellogenin 2 (VTG2), lipase maturation factor 1 (LMF1), calcium voltage-gated channel auxiliary subunit alpha2delta 3 (CACNA2D3), poly(A) binding protein cytoplasmic 1 (PABPC1), programmed cell death 11 (PDCD11) and family with sequence similarity 213 member A (FAM213A) can be considered as the candidate genes associated with egg number traits, due to their reported association with animal reproduction traits. Noteworthy, results suggests that VTG2 and PDCD11 are not only involved in the regulation of EN3, but also in the regulation of EN5, implies that VTG2 and PDCD11 have a significant influence on egg production traits. Our study offers valuable genomic insights into the molecular genetic mechanisms that govern egg number traits in a Chinese indigenous egg-laying chicken breed. These findings have the potential to enhance the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Chao Qi
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Cunwei Tang
- Fujian Sunnzer Biological Technology Development Co. Ltd., 354100, Guang'ze, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China..
| |
Collapse
|
4
|
Goh KM, González-Siso MI, Sani RK. Genomics of extreme environments: unveiling the secrets of survival. Sci Rep 2023; 13:21441. [PMID: 38052842 PMCID: PMC10698157 DOI: 10.1038/s41598-023-48470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor, Malaysia.
| | - María-Isabel González-Siso
- Facultade de Ciencias, CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, 15071, A Coruña, Spain
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| |
Collapse
|
5
|
Wang S, Ma J, Qiu H, Liu S, Zhang S, Liu H, Zhang P, Ge RL, Li G, Cui S. Plasma exosomal microRNA expression profiles in patients with high-altitude polycythemia. Blood Cells Mol Dis 2023; 98:102707. [DOI: 10.1016/j.bcmd.2022.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
6
|
Li B, Jia G, Wen D, Zhao X, Zhang J, Xu Q, Zhao X, Jiang N, Liu Z, Wang Y. Rumen microbiota of indigenous and introduced ruminants and their adaptation to the Qinghai-Tibetan plateau. Front Microbiol 2022; 13:1027138. [PMID: 36299720 PMCID: PMC9589358 DOI: 10.3389/fmicb.2022.1027138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The grassland in the Qinghai-Tibetan plateau provide habitat for many indigenous and introduced ruminants which perform important ecological functions that impact the whole Qinghai-Tibetan plateau ecosystem. These indigenous Tibetan ruminants have evolved several adaptive traits to withstand the severe environmental conditions, especially cold, low oxygen partial pressure, high altitude, strong UV radiation, and poor forage availability on the alpine rangelands. Despite the challenges to husbandry associated with the need for enhanced adaptation, several domesticated ruminants have also been successfully introduced to the alpine pasture regions to survive in the harsh environment. For ruminants, these challenging conditions affect not only the host, but also their commensal microbiota, especially the diversity and composition of the rumen microbiota; multiple studies have described tripartite interactions among host-environment-rumen microbiota. Thus, there are significant benefits to understanding the role of rumen microbiota in the indigenous and introduced ruminants of the Qinghai-Tibetan plateau, which has co-evolved with the host to ensure the availability of specific metabolic functions required for host survival, health, growth, and development. In this report, we systemically reviewed the dynamics of rumen microbiota in both indigenous and introduced ruminants (including gut microbiota of wild ruminants) as well as their structure, functions, and interactions with changing environmental conditions, especially low food availability, that enable survival at high altitudes. We summarized that three predominant driving factors including increased VFA production, enhanced fiber degradation, and lower methane production as indicators of higher efficiency energy harvest and nutrient utilization by microbiota that can sustain the host during nutrient deficit. These cumulative studies suggested alteration of rumen microbiota structure and functional taxa with genes that encode cellulolytic enzymes to potentially enhance nutrient and energy harvesting in response to low quality and quantity forage and cold environment. Future progress toward understanding ruminant adaptation to high altitudes will require the integration of phenotypic data with multi-omics analyses to identify host-microbiota co-evolutionary adaptations enabling survival on the Qinghai-Tibetan plateau.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Gaobin Jia
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiuxin Zhao
- Agricultural College, Ningxia University, Yinchuan, China
| | - Junxing Zhang
- Agricultural College, Ningxia University, Yinchuan, China
| | - Qing Xu
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Xialing Zhao
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Nan Jiang
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yachun Wang
- Agricultural College, Ningxia University, Yinchuan, China
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|