1
|
Razavi MS, Munn LL, Padera TP. Mechanics of Lymphatic Pumping and Lymphatic Function. Cold Spring Harb Perspect Med 2025; 15:a041171. [PMID: 38692743 PMCID: PMC11875091 DOI: 10.1101/cshperspect.a041171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The lymphatic system plays a crucial role in maintaining tissue fluid balance, immune surveillance, and the transport of lipids and macromolecules. Lymph is absorbed by initial lymphatics and then driven through lymph nodes and to the blood circulation by the contraction of collecting lymphatic vessels. Intraluminal valves in collecting lymphatic vessels ensure the unidirectional flow of lymph centrally. The lymphatic muscle cells that invest in collecting lymphatic vessels impart energy to propel lymph against hydrostatic pressure gradients and gravity. A variety of mechanical and biochemical stimuli modulate the contractile activity of lymphatic vessels. This review focuses on the recent advances in our understanding of the mechanisms involved in regulating and collecting lymphatic vessel pumping in normal tissues and the association between lymphatic pumping, infection, inflammatory disease states, and lymphedema.
Collapse
Affiliation(s)
- Mohammad S Razavi
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy P Padera
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
2
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
3
|
Hahn RG. Fluid distribution during surgery in the flat recumbent, Trendelenburg, and the reverse Trendelenburg body positions. Acta Anaesthesiol Scand 2024; 68:1059-1067. [PMID: 38816073 DOI: 10.1111/aas.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The distribution and elimination of infused crystalloid fluid is known to be affected by general anesthesia, but it is unclear whether changes differ depending on whether the patient is operated in the flat recumbent position, the Trendelenburg ("legs up") position, or the reverse Trendelenburg ("head up") position. METHODS Retrospective data on hemodilution and urine output obtained during and after infusion of 1-2 L of Ringer's solution over 30-60 min were collected from 61 patients undergoing surgery under general anesthesia and 106 volunteers matched with respect to the infusion volume and infusion time. Parameters describing fluid distribution in the anesthetized and awake subjects were compared by population volume kinetic analysis. RESULTS General anesthesia decreased the rate constant for urine output by 79% (flat recumbent), 91% (legs up) and 91% (head up), suggesting that laparoscopic surgery per se intensified the already strong anesthesia-induced fluid retention. General anesthesia also decreased the rate constant governing the return of the distributed fluid to the plasma by 32%, 15%, and 70%, respectively. These results agree with laboratory data showing a depressive effect of anesthetic drugs on lymphatic pumping, and further suggest that the "legs up" position facilitates lymphatic flow, whereas the "head up" position slows this flow. Both Trendelenburg positions increased swelling of the "third fluid space". CONCLUSIONS General anesthesia caused retention of infused fluid with preferential distribution to the extravascular space. Both Trendelenburg positions had a modifying influence on the kinetic adaptations that agreed with the gravitational forces inflicted by tilting to body.
Collapse
Affiliation(s)
- Robert G Hahn
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Kim JS, Han JW, Oh DJ, Suh SW, Kwon MJ, Park J, Jo S, Kim JH, Kim KW. Effects of sleep quality on diurnal variation of brain volume in older adults: A retrospective cross-sectional study. Neuroimage 2024; 288:120533. [PMID: 38340880 DOI: 10.1016/j.neuroimage.2024.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
AIM Brain volume is influenced by several factors that can change throughout the day. In addition, most of these factors are influenced by sleep quality. This study investigated diurnal variation in brain volume and its relation to overnight sleep quality. METHODS We enrolled 1,003 healthy Koreans without any psychiatric disorders aged 60 years or older. We assessed sleep quality and average wake time using the Pittsburgh Sleep Quality Index, and divided sleep quality into good, moderate, and poor groups. We estimated the whole and regional brain volumes from three-dimensional T1-weighted brain MRI scans. We divided the interval between average wake-up time and MRI acquisition time (INT) into tertile groups: short (INT1), medium (INT2), and long (INT3). RESULTS Whole and regional brain volumes showed no significance with respect to INT. However, the `interaction between INT and sleep quality showed significance for whole brain, cerebral gray matter, and cerebrospinal fluid volumes (p < .05). The INT2 group showed significantly lower volumes of whole brain, whole gray matter, cerebral gray matter, cortical gray matter, subcortical gray matter, and cerebrospinal fluid than the INT1 and INT3 groups only in the individuals with good sleep quality. CONCLUSION Human brain volume changes significantly within a day associated with overnight sleep in the individuals with good sleep quality.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
| | - Dae Jong Oh
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul Korea
| | - Seung Wan Suh
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min Jeong Kwon
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Jieun Park
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Sungman Jo
- Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea; Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
5
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Brown S, Nores GDG, Sarker A, Ly C, Li C, Park HJ, Hespe GE, Gardenier J, Kuonqui K, Campbell A, Shin J, Kataru RP, Aras O, Mehrara BJ. Topical captopril: a promising treatment for secondary lymphedema. Transl Res 2023; 257:43-53. [PMID: 36736951 PMCID: PMC10192126 DOI: 10.1016/j.trsl.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-mediated tissue fibrosis is an important regulator of lymphatic dysfunction in secondary lymphedema. However, TGF-β1 targeting can cause toxicity and autoimmune complications, limiting clinical utility. Angiotensin II (Ang II) modulates intracellular TGF-β1 signaling, and inhibition of Ang II production using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, has antifibrotic efficacy in some pathological settings. Therefore, we analyzed the expression of ACE and Ang II in clinical lymphedema biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL) and mouse models, and found that cutaneous ACE expression is increased in lymphedematous tissues. Furthermore, topical captopril decreases fibrosis, activation of intracellular TGF-β1 signaling pathways, inflammation, and swelling in mouse models of lymphedema. Captopril treatment also improves lymphatic function and immune cell trafficking by increasing collecting lymphatic pumping. Our results show that the renin-angiotensin system in the skin plays an important role in the regulation of fibrosis in lymphedema, and inhibition of this signaling pathway may hold merit for treating lymphedema.
Collapse
Affiliation(s)
- Stav Brown
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriela D G Nores
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ananta Sarker
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Ly
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Claire Li
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geoffrey E Hespe
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Gardenier
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Kuonqui
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adana Campbell
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omer Aras
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
7
|
A Double-Permeability Poroelasticity Model for Fluid Transport in a Biological Tissue. Transp Porous Media 2023. [DOI: 10.1007/s11242-023-01904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Li H, Wei H, Padera TP, Baish JW, Munn LL. Computational simulations of the effects of gravity on lymphatic transport. PNAS NEXUS 2022; 1:pgac237. [PMID: 36712369 PMCID: PMC9802413 DOI: 10.1093/pnasnexus/pgac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
Physical forces, including mechanical stretch, fluid pressure, and shear forces alter lymphatic vessel contractions and lymph flow. Gravitational forces can affect these forces, resulting in altered lymphatic transport, but the mechanisms involved have not been studied in detail. Here, we combine a lattice Boltzmann-based fluid dynamics computational model with known lymphatic mechanobiological mechanisms to investigate the movement of fluid through a lymphatic vessel under the effects of gravity that may either oppose or assist flow. Regularly spaced, mechanical bi-leaflet valves in the vessel enforce net positive flow as the vessel walls contract autonomously in response to calcium and nitric oxide (NO) levels regulated by vessel stretch and shear stress levels. We find that large gravitational forces opposing flow can stall the contractions, leading to no net flow, but transient mechanical perturbations can re-establish pumping. In the case of gravity strongly assisting flow, the contractions also cease due to high shear stress and NO production, which dilates the vessel to allow gravity-driven flow. In the intermediate range of oppositional gravity forces, the vessel actively contracts to offset nominal gravity levels or to modestly assist the favorable hydrostatic pressure gradients.
Collapse
Affiliation(s)
- Huabing Li
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Material Science and Technology, Guilin University of Electronic Technology, Guilin 541004, China
| | - Huajian Wei
- Department of Material Science and Technology, Guilin University of Electronic Technology, Guilin 541004, China
| | - Timothy P Padera
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James W Baish
- Biomedical Engineering, Bucknell University, Lewisburg, PA 17837, USA
| | - Lance L Munn
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|