1
|
Mutithu DW, Aremu OO, Mokaila D, Bana T, Familusi M, Taylor L, Martin LJ, Heathfield LJ, Kirwan JA, Wiesner L, Adeola HA, Lumngwena EN, Manganyi R, Skatulla S, Naidoo R, Ntusi NAB. A study protocol to characterise pathophysiological and molecular markers of rheumatic heart disease and degenerative aortic stenosis using multiparametric cardiovascular imaging and multiomics techniques. PLoS One 2024; 19:e0303496. [PMID: 38739622 PMCID: PMC11090351 DOI: 10.1371/journal.pone.0303496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS. METHODS In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.
Collapse
Affiliation(s)
- Daniel W. Mutithu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Olukayode O. Aremu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Dipolelo Mokaila
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Tasnim Bana
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Mary Familusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lorna J. Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Laura J. Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jennifer A. Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, Helmholtz Association, Berlin, Germany
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Henry A. Adeola
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Evelyn N. Lumngwena
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodgers Manganyi
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Sebastian Skatulla
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Luo K, Zhao H, Wang M, Tian M, Si N, Xia W, Song J, Chen Y, Wang L, Zhang Y, Wei X, Li X, Qin G, Yang J, Wang H, Bian B, Zhou Y. Huanglian Jiedu Wan intervened with "Shi-Re Shanghuo" syndrome through regulating immune balance mediated by biomarker succinate. Clin Immunol 2024; 258:109861. [PMID: 38065370 DOI: 10.1016/j.clim.2023.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
With increasing stress in daily life and work, subhealth conditions induced by "Shi-Re Shanghuo" syndrome was gradually universal. "Huanglian Jiedu Wan" (HLJDW) was the first new syndrome Chinese medicine approved for the treatment of "Shi-Re Shanghuo" with promising clinical efficacy. Preliminary small-sample clinical studies have identified some notable biomarkers (succinate, 4-hydroxynonenal, etc.). However, the correlation and underlying mechanism between these biomarkers of HLJDW intervention on "Shi-Re Shanghuo" syndrome remained ambiguous. Therefore, this study was designed as a randomized, double-blind, multicenter, placebo-controlled Phase II clinical trial, employing integrated analysis techniques such as non-targeted and targeted metabolomics, salivary microbiota, proteomics, parallel peaction monitoring, molecular docking and surface plasmon resonance (SPR). The results of the correlation analysis indicated that HLJDW could mediate the balance between inflammation and immunity through succinate produced via host and microbial source to intervene "Shi-Re Shanghuo" syndrome. Further through the HIF1α/MMP9 pathway, succinate regulated downstream arachidonic acid metabolism, particularly the lipid peroxidation product 4-hydroxynonenal. Finally, an animal model of recurrent oral ulcers induced by "Shi-Re Shang Huo" was established and HLJDW was used for intervention, key essential indicators (succinate, glutamine, 4-hydroxynonenal, arachidonic acid metabolism) essential in the potential pathway HIF1α/MMP9 discovered in clinical practice were validated. The results were found to be consistent with our clinical findings. Taken together, succinate was observed as an important signal that triggered immune responses, which might serve as a key regulatory metabolic switch or marker of "Shi-Re Shanghuo" syndrome treated with HLJDW.
Collapse
Affiliation(s)
- Keke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Xia
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Jianfang Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yunqin Chen
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Linna Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing Li
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Guangyuan Qin
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Jiaying Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Lopez-Schenk R, Collins NL, Schenk NA, Beard DA. Integrated Functions of Cardiac Energetics, Mechanics, and Purine Nucleotide Metabolism. Compr Physiol 2023; 14:5345-5369. [PMID: 38158366 PMCID: PMC10956446 DOI: 10.1002/cphy.c230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Purine nucleotides play central roles in energy metabolism in the heart. Most fundamentally, the free energy of hydrolysis of the adenine nucleotide adenosine triphosphate (ATP) provides the thermodynamic driving force for numerous cellular processes including the actin-myosin crossbridge cycle. Perturbations to ATP supply and/or demand in the myocardium lead to changes in the homeostatic balance between purine nucleotide synthesis, degradation, and salvage, potentially affecting myocardial energetics and, consequently, myocardial mechanics. Indeed, both acute myocardial ischemia and decompensatory remodeling of the myocardium in heart failure are associated with depletion of myocardial adenine nucleotides and with impaired myocardial mechanical function. Yet there remain gaps in the understanding of mechanistic links between adenine nucleotide degradation and contractile dysfunction in heart disease. The scope of this article is to: (i) review current knowledge of the pathways of purine nucleotide depletion and salvage in acute ischemia and in chronic heart disease; (ii) review hypothesized mechanisms linking myocardial mechanics and energetics with myocardial adenine nucleotide regulation; and (iii) highlight potential targets for treating myocardial metabolic and mechanical dysfunction associated with these pathways. It is hypothesized that an imbalance in the degradation, salvage, and synthesis of adenine nucleotides leads to a net loss of adenine nucleotides in both acute ischemia and under chronic high-demand conditions associated with the development of heart failure. This reduction in adenine nucleotide levels results in reduced myocardial ATP and increased myocardial inorganic phosphate. Both of these changes have the potential to directly impact tension development and mechanical work at the cellular level. © 2024 American Physiological Society. Compr Physiol 14:5345-5369, 2024.
Collapse
Affiliation(s)
- Rachel Lopez-Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Collins
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah A Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel A Beard
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Rubić I, Weidt S, Burchmore R, Kovačević A, Kuleš J, Eckersall PD, Torti M, Jović I, Kovačić M, Gotić J, Barić Rafaj R, Novak P, Samardžija M, Mrljak V. Metabolome Profiling in the Plasma of Dogs with Idiopathic Dilated Cardiomyopathy: A Multiplatform Mass-Spectrometry-Based Approach. Int J Mol Sci 2023; 24:15182. [PMID: 37894863 PMCID: PMC10607069 DOI: 10.3390/ijms242015182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Dilated cardiomyopathy is one of the important diseases in dogs and humans. The second most common cause of heart failure in dogs is idiopathic dilated cardiomyopathy (iDCM), which results in heart failure or sudden cardiac death due to arrhythmia. This study aimed to determine changes in the plasma metabolome of dogs with iDCM compared to healthy dogs. For that purpose, a multiplatform mass-spectrometry-based approach was used. In this study, we included two groups of dogs: 12 dogs with iDCM and 8 healthy dogs. A total of 272 metabolites were detected in the plasma samples of dogs by combining three approaches but four MS-based platforms (GC-MS, LC-MS (untargeted), LC-MS (targeted), and FIA-MS (targeted) methods). Our findings demonstrated changes in the canine plasma metabolome involved in the development of iDCM, including the different concentrations of amino acids, biogenic amines, acylcarnitines, triglycerides and diglycerides, sphingomyelins, and organic acids. The results of this study will enable the detection and monitoring of pathophysiological mechanisms involved in the development of iDCM in the future.
Collapse
Affiliation(s)
- Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Stefan Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, UK; (S.W.); (R.B.)
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, UK; (S.W.); (R.B.)
| | - Alan Kovačević
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (R.B.R.)
| | - Peter David Eckersall
- Institute of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, 30100 Murcia, Spain
| | - Marin Torti
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| | - Ines Jović
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| | - Mislav Kovačić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia;
| | - Jelena Gotić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (R.B.R.)
| | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marko Samardžija
- Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| |
Collapse
|
5
|
Mutithu DW, Kirwan JA, Adeola HA, Aremu OO, Lumngwena EN, Wiesner L, Skatulla S, Naidoo R, Ntusi NAB. High-Throughput Metabolomics Applications in Pathogenesis and Diagnosis of Valvular Heart Disease. Rev Cardiovasc Med 2023; 24:169. [PMID: 39077521 PMCID: PMC11264134 DOI: 10.31083/j.rcm2406169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 07/31/2024] Open
Abstract
High-throughput metabolomics techniques are a useful tool to understand many disease conditions including cardiovascular disease such as valvular heart disease(s) (VHD). VHD involves damage to heart valves, mostly presenting as stenosis, regurgitation or prolapse and can be classified into degenerative, rheumatic, congenital, or prosthetic valve disease. Gaps remain in our understanding of the pathogenesis of the common VHD. It is now fitting to place into perspective the contribution of metabolomics in the mechanism of development, diagnosis, and prognosis of VHD. A structured search for metabolomics studies centred on human VHD was undertaken. Biomarkers associated with the pathogenesis of bicuspid aortic valve disease, mitral valve disease, rheumatic heart disease, and degenerative aortic valve stenosis are reviewed and discussed. In addition, metabolic biomarkers reported to prognosticate patient outcomes of post-valve repair or replacement are highlighted. Finally, we also review the pitfalls and limitations to consider when designing metabolomics studies, especially from a clinician's viewpoint. In the future, reliable and simple metabolic biomarker(s) may supplement the existing diagnostic tools in the early diagnosis of VHD.
Collapse
Affiliation(s)
- Daniel W. Mutithu
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
| | - Jennifer A. Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Henry A. Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - Olukayode O. Aremu
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
| | - Evelyn N. Lumngwena
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IIDM), University of Cape Town, 7925 Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - Sebastian Skatulla
- Computational Continuum Mechanics Research Group, Department of Civil Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, 7925 Cape Town, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, and National Health Laboratory Services, 7925 Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| |
Collapse
|
6
|
Hodek O, Henderson J, Argemi-Muntadas L, Khan A, Moritz T. Structural elucidation of 3-nitrophenylhydrazine derivatives of tricarboxylic acid cycle acids and optimization of their fragmentation to boost sensitivity in liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123719. [PMID: 37060816 DOI: 10.1016/j.jchromb.2023.123719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Carboxylic acids participate in many metabolic pathways including tricarboxylic acid (TCA) cycle. Therefore, there have been ongoing attempts to develop sensitive liquid chromatography-mass spectrometry methods over the last decades. Derivatization of the carboxylic acids with 3-nitrophenylhydrazine presents a well-established methodology, and yet the derivatized species of polycarboxylic acids and their fragmentation in collision-induced dissociation have not been fully studied before. In our study, we elucidated how annotation of most abundant 3-nitrophenylhydrazine derivatives and optimization of their fragmentation in multiple reaction monitoring can boost the sensitivity, especially for polycarboxylic acids. Finally, the optimized liquid chromatography-tandem mass spectrometry method allowed for low detection limits ranging from 10 pM for 2-oxoglutaric acid to 800 pM for pyruvic acid. All TCA carboxylates were quantified in 20 µL of human plasma and the targeted method was validated in the same matrix. The same methodology with a modified gradient elution was also applied to untargeted screening of fatty acids by using high-resolution mass spectrometry enabling identification of 29 medium- to long-chain fatty acids in human plasma. The TCA carboxylates were also quantified in 105 of C2C12 mouse myuotube cells grown under different treatments to proof applicability of the methodology to biological studies in a wider sense. However, unfortunately all the TCA carboxylates were also found in the derivatized blanks in substantial amounts, which prevents from using the methodology for quantification of the carboxylates in less than 105 cells.
Collapse
Affiliation(s)
- Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 907 36 Umeå, Sweden; Swedish Metabolomics Centre (SMC), Umeå, Sweden.
| | - John Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lidia Argemi-Muntadas
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Adnan Khan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 907 36 Umeå, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
7
|
Zang L, Wan Y, Zhang H, Zhang Y, Gao Y, He Y, Hu J, Kang Y, Cao D, Yang M. Characterization of non-volatile organic contaminants in coking wastewater using non-target screening: Dominance of nitrogen, sulfur, and oxygen-containing compounds in biological effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155768. [PMID: 35533869 DOI: 10.1016/j.scitotenv.2022.155768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
While abundant volatile compounds (VOCs) have been identified in coking wastewater, the structures and occurrence of non-volatile organic compounds (non-VOCs) have remained unknown. In this study, 3966 non-VOCs belonging to 24 groups were tentatively identified for the first time in wastewater from four biological coking wastewater treatment systems in northern China using a non-target screening technique. A total of 227 compounds with CHNO, CHO, CHOS, and CHNOS elemental compositions were assigned with level 2 identification confidence, and 19 of them were confirmed with authentic standards, with 9-methyl-9H-carbazole-3-carbaldehyde (1706.3-2032.7 μg/L) and 3-Indolyl acetic acid monomethyl terephthalate (773.7-1449.9 μg/L) as the top two compounds in the influents, and 9-methyl-9H-carbazole-3-carbaldehyde (31.8-130.1 μg/L) and monomethyl terephthalate (13.9-196.6 μg/L) as the top two in the effluents. The four groups of substances accounted for 93.4% and 71.5% of the total responses of tentatively identified compounds in the influents and biological effluents, respectively, and were estimated to contribute 32.3-48.9% of the chemical oxygen demand in the biological effluents. In comparison with those in the influent, abundant S-containing compounds (CHOS and CHNOS, 35.2% of the total responses) were observed in the biological effluents, suggesting their highly bio-refractory characteristics. The advanced treatment process using synchronized oxidation-adsorption could almost completely remove the CHOS and CHNOS compounds from the biological effluents.
Collapse
Affiliation(s)
- Lijie Zang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haifeng Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Gao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yupeng He
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|