1
|
Park JW, Rarison RH, Truong VL, Jeong WS. Exploring the Therapeutic Potentials and Molecular Mechanisms of Coscinium fenestratum Alkaloids in Ulcerative Colitis: An Integrative Network Pharmacology and Molecular Docking Approach. Prev Nutr Food Sci 2024; 29:441-453. [PMID: 39759821 PMCID: PMC11699582 DOI: 10.3746/pnf.2024.29.4.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Coscinium fenestratum, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of C. fenestratum are unclear. This study aimed to elucidate anticolitis mechanisms of C. fenestratum alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses. Key active alkaloids and core target genes were identified through pharmacological and protein-protein interaction networks. The core targets were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways to determine the functional properties of active CFA. Finally, the binding affinity of the key compounds with the core targets was determined using molecular docking. The results showed that 11 active CFAs interactively interfered with 10 hub genes related to ulcerative colitis, including prostaglandin-endoperoxide synthase 2 (PTGS2), selectin E (SELE), kinase insert domain receptor (KDR), fms-related receptor tyrosine kinase 1 (FLT1), intracellular adhesion molecule 1 (ICAM1), C-X-C motif chemokine receptor 4 (CXCR4), hypoxia-inducible factor-1 (HIF1A), matrix metalloproteinase (MMP)-2, MMP3, and MMP9, which were functionally involved in the immunological response, tumor necrosis factor signaling pathway, and interleukin-17 signaling pathway. The molecular docking results indicated that CFA compounds had a strong binding affinity for the hub genes. The findings reveal, for the first time, a therapeutic role of CFA in alleviating ulcerative colitis through its predicted interactions with relevant biological targets.
Collapse
Affiliation(s)
- Ji-Won Park
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | | | - Van-Long Truong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
2
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
3
|
Zhao X, Qu Q, Zhang Y, Zhao P, Zhang X, Tang Y, Lei X, Wei X, Song X. Mechanism of Xing 9 ling tablet candy for alcoholic liver disease based on network pharmacology. Anal Biochem 2024; 691:115534. [PMID: 38621605 DOI: 10.1016/j.ab.2024.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Xing 9 Ling tablet candy (X9LTC) effectively treats alcoholic liver disease (ALD), but its potential mechanism and molecular targets remain unstudied. We aimed to address this gap using network pharmacology. Furthermore, high-performance liquid chromatography (HPLC) and database analysis revealed a total of 35 active ingredients and 311 corresponding potential targets of X9LTC. Protein interaction analysis revealed PTGS2, JUN, and FOS as its core targets. Enrichment analysis indicated that chemical carcinogenesis-receptor activation, IL-17 and TNF signaling pathway were enriched by multiple core targets, which might be the main pathway of action. Further molecular docking validation showed that the core targets had good binding activities with the identified compounds. Animal experiments showed that X9LTC could reduce the high expression of ALT, AST and TG in the serum of ALD mice, alleviate the lesions in liver tissues, and reverse the high expression of PTGS2, JUN, and FOS proteins in the liver tissues. In this study, we established a method for the determination of X9LTC content for the first time, and predicted its active ingredient and mechanism of action in treating ALD, providing theoretical basis for further research.
Collapse
Affiliation(s)
- Xiaomei Zhao
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Qiong Qu
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ying Zhang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Peiyuan Zhao
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xinbo Zhang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yingying Tang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xuan Lei
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xuan Wei
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xiao Song
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
4
|
Rehman IU, Saleem M, Raza SA, Bashir S, Muhammad T, Asghar S, Qamar MU, Shah TA, Bin Jardan YA, Mekonnen AB, Bourhia M. Anti-ulcerative colitis effects of chemically characterized extracts from C alliandra haematocephala in acetic acid-induced ulcerative colitis. Front Chem 2024; 12:1291230. [PMID: 38476652 PMCID: PMC10927971 DOI: 10.3389/fchem.2024.1291230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background: Ulcerative colitis is a chronic immune-mediated inflammatory bowel disease that involves inflammation and ulcers of the colon and rectum. To date, no definite cure for this disease is available. Objective: The objective of the current study was to assess the effect of Calliandra haematocephala on inflammatory mediators and oxidative stress markers for the exploration of its anti-ulcerative colitis activity in rat models of acetic acid-induced ulcerative colitis. Methods: Methanolic and n-hexane extracts of areal parts of the plant were prepared by cold extraction method. Phytochemical analysis of both extracts was performed by qualitative analysis, quantitative methods, and high-performance liquid chromatography (HPLC). Prednisone at 2 mg/kg dose and plant extracts at 250, 500, and 750 mg/kg doses were given to Wistar rats for 11 days, which were given acetic acid on 8th day through the trans-rectal route for the induction of ulcerative colitis. A comparison of treatment groups was done with a normal control group and a colitis control group. To evaluate the anti-ulcerative colitis activity of Calliandra haematocephala, different parameters such as colon macroscopic damage, ulcer index, oxidative stress markers, histopathological examination, and mRNA expression of pro and anti-inflammatory mediators were evaluated. mRNA expression analysis was carried out by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Results: The phytochemical evaluation revealed polyphenols, flavonoids, tannins, alkaloids, and sterols in both extracts of the plant. Results of the present study exhibited that both extracts attenuated the large bowel inflammation and prevented colon ulceration at all tested doses. Macroscopic damage and ulcer scoreswere significantly decreased by both extracts. Malondialdehyde (MDA) levels and nitrite/nitrate concentrations in colon tissues were returned to normal levels while superoxide dismutase (SOD) activity was significantly improved by all doses. Histopathological examination exhibited that both extracts prevented the inflammatory changes, cellular infiltration, and colon thickening. Gene expression analysis by RT-qPCR revealed the downregulation of pro-inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) whereas the anti-inflammatory cytokines including Interleukin-4 (IL-4) and Interleukin-10 (IL-10) were found to be upregulated in treated rats. Conclusion: It was concluded based on study outcomes that methanolic and n-hexane extracts of Calliandra haematocephala exhibited anti-ulcerative colitis activity through modulation of antioxidant defense mechanisms and the immune system. In this context, C. haematocephala can be considered as a potential therapeutic approach for cure of ulcerative colitis after bioassay-directed isolation of bioactive phytochemicals and clinical evaluation.
Collapse
Affiliation(s)
- Inaam Ur Rehman
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Saher Bashir
- Department of Chemistry, Faculty of Sciences, University of the Punjab, Lahore, Pakistan
| | - Taha Muhammad
- Shalamar Medical and Dental College, Lahore, Pakistan
| | - Shahzad Asghar
- Department of Pharmacy, University of South Asia, Lahore, Pakistan
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
5
|
Luo K, Zhao H, Wang M, Tian M, Si N, Xia W, Song J, Chen Y, Wang L, Zhang Y, Wei X, Li X, Qin G, Yang J, Wang H, Bian B, Zhou Y. Huanglian Jiedu Wan intervened with "Shi-Re Shanghuo" syndrome through regulating immune balance mediated by biomarker succinate. Clin Immunol 2024; 258:109861. [PMID: 38065370 DOI: 10.1016/j.clim.2023.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
With increasing stress in daily life and work, subhealth conditions induced by "Shi-Re Shanghuo" syndrome was gradually universal. "Huanglian Jiedu Wan" (HLJDW) was the first new syndrome Chinese medicine approved for the treatment of "Shi-Re Shanghuo" with promising clinical efficacy. Preliminary small-sample clinical studies have identified some notable biomarkers (succinate, 4-hydroxynonenal, etc.). However, the correlation and underlying mechanism between these biomarkers of HLJDW intervention on "Shi-Re Shanghuo" syndrome remained ambiguous. Therefore, this study was designed as a randomized, double-blind, multicenter, placebo-controlled Phase II clinical trial, employing integrated analysis techniques such as non-targeted and targeted metabolomics, salivary microbiota, proteomics, parallel peaction monitoring, molecular docking and surface plasmon resonance (SPR). The results of the correlation analysis indicated that HLJDW could mediate the balance between inflammation and immunity through succinate produced via host and microbial source to intervene "Shi-Re Shanghuo" syndrome. Further through the HIF1α/MMP9 pathway, succinate regulated downstream arachidonic acid metabolism, particularly the lipid peroxidation product 4-hydroxynonenal. Finally, an animal model of recurrent oral ulcers induced by "Shi-Re Shang Huo" was established and HLJDW was used for intervention, key essential indicators (succinate, glutamine, 4-hydroxynonenal, arachidonic acid metabolism) essential in the potential pathway HIF1α/MMP9 discovered in clinical practice were validated. The results were found to be consistent with our clinical findings. Taken together, succinate was observed as an important signal that triggered immune responses, which might serve as a key regulatory metabolic switch or marker of "Shi-Re Shanghuo" syndrome treated with HLJDW.
Collapse
Affiliation(s)
- Keke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Xia
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Jianfang Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yunqin Chen
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Linna Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing Li
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Guangyuan Qin
- Guizhou Bailing Group Pharmaceutical Co., Ltd., Anshun 561000, China
| | - Jiaying Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Kang YH, Zhou T, Wu SX, Li XJ, Huang XY, Xia R, Ling YH, Zhou HT, Zhang SW, Yin WY. Effects of Rosa roxburghii Tratt on Ulcerative Colitis: An Integrated Analysis of Network Pharmacology and Experimental Validation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1477-1499. [PMID: 37530508 DOI: 10.1142/s0192415x23500672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Rosa roxburghii Tratt is a traditional Chinese plant that has been used to treat different inflammatory diseases. The purpose of this study was to investigate the mechanism of action of Rosa roxburghii Tratt extract (RRTE) against ulcerative colitis (UC) using network pharmacology and experimental validation. HPLC-Q/Orbitrap MS was used to rapidly identify the substances contained in RRTE after extracting the active components from the fruit. Then, network pharmacology combined with molecular docking was used to explore the critical target and potential mechanism of RRTE against UC using the active ingredients in RRTE as the research object. Data are presented in a visual manner. Finally, the pharmacological effects of RRTE in alleviating UC were further verified using a DSS-induced UC model of NCM460. The results showed that 25 components in RRTE were identified. A total of 250 targets of the active components and 5376 targets associated with UC were collected. Furthermore, a systematic analysis of the Protein-Protein Interaction (PPI) networks suggests that epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), and serine/threonine kinase 1 (AKT1) are critical targets for RRTE in the treatment of UC. A comprehensive regulatory network analysis showed that RRTE alleviated UC through the EGFR-mediated PI3K/Akt pathway, and molecular docking showed that active components could strongly bind to EGFR, PIK3R1, and AKT1. In addition, RRTE alleviated dextran sulfate sodium salt (DSS)-induced cell injury and significantly decreased the protein expression levels of EGFR, PIK3R1, and p-AKT in NCM460 cells in vitro. Furthermore, RRTE significantly regulated the expression of the apoptosis-related proteins Apoptotic protease-activating factor 1 (Apaf1), cleaved caspase-3, B-cell lymphoma-2 (Bcl2), and Bcl2 associated X protein (Bax). In conclusion, the components of RRTE are complex, and RRTE can relieve UC through the EGFR-mediated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yu-Hong Kang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Shou-Xun Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Xing-Jie Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Xiao-Yi Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Rui Xia
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Yi-Han Ling
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - He-Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Shu-Wen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| | - Wen-Ya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, P. R. China
| |
Collapse
|
7
|
Li X, Xu S, Zhang Y, Li K, Gao XJ, Guo MY. Berberine Depresses Inflammation and Adjusts Smooth Muscle to Ameliorate Ulcerative Colitis of Cats by Regulating Gut Microbiota. Microbiol Spectr 2022; 10:e0320722. [PMID: 36287004 PMCID: PMC9769923 DOI: 10.1128/spectrum.03207-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023] Open
Abstract
Intestinal microbiota dysbiosis is a well established characteristic of ulcerative colitis (UC). Regulating the gut microbiota is an effective UC treatment strategy. Berberine (BBR), an alkaloid extracted from several Chinese herbs, is a common traditional Chinese medicine. To establish the efficacy and mechanism of action of BBR, we constructed a UC model using healthy adult shorthair cats to conduct a systematic study of colonic tissue pathology, inflammatory factor expression, and gut microbiota structure. We investigated the therapeutic capacity of BBR for regulating the gut microbiota and thus work against UC in cats using 16S rRNA genes amplicon sequencing technology. Our results revealed that dextran sulfate sodium (DSS)-induced cat models of UC showed weight loss, diarrhea accompanied by mucous and blood, histological abnormalities, and shortening of the colon, all of which were significantly alleviated by supplementation with BBR. A 16S rRNA gene-based microbiota analysis demonstrated that BBR could significantly benefit gut microbiota. Western blot, quantitative PCR, and enzyme-linked immunosorbent assays (ELISAs) showed that in DSS-induced cat models, the expression of the inflammatory factors was increased, activating the JAK2/STAT3 signaling pathway, and treatment with BBR reversed this effect. The myosin light chain (MLC) phosphorylation in the smooth muscle of the intestines is associated with motility of inflammation-related diarrhea in cats. This study used gut flora analyses to demonstrate the anti-UC effects of BBR and its potential therapeutic mechanisms and offers novel insights into the prevention of inflammatory diseases using natural products. IMPORTANCE Ulcerative colitis (UC) is common in clinics. Intestinal microbiota disorder is correlated with ulcerative colitis. Although there are many studies on ulcerative colitis in rats, there are few studies on colitis in cats. Therefore, this study explored the possibility of the use of BBR as a safe and efficient treatment for colitis in cats. The results demonstrated the therapeutic effects of BBR on UC based on the state of the intestinal flora. The study found BBR supplementation to be effective against dextran sulfate sodium (DSS)-induced colitis, smooth muscle damage, and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Xueying Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yanhe Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Kan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Xue-Jiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Meng-yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
8
|
Yang Y, Hua Y, Chen W, Zheng H, Wu H, Qin S, Huang S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front Pharmacol 2022; 13:1037856. [PMID: 36532769 PMCID: PMC9748441 DOI: 10.3389/fphar.2022.1037856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 08/09/2023] Open
Abstract
Evidence of the advantages of Coptidis Rhizoma (CR) for the treatment of ulcerative colitis (UC) is accumulating. However, research revealing the targets and molecular mechanisms of CR against UC is scarce. In this research, a bioinformatics analysis was performed to carry out the physicochemical properties and biological activities of phytochemicals in CR and analyze the binding activities, targets, biological functions and mechanisms of CR against UC. This research shows that the CR's key phytochemicals, which are named Coptisine, Berberrubine, Berlambine, Berberine, Epiberberine, Obacunone, Worenine, Quercetin, (R)-Canadine, Magnograndiolide, Palmatine and Moupinamide, have ideal physicochemical properties and bioactivity. A total of 1,904 potential phytochemical targets and 17,995 UC-related targets are identified, and we finally acquire 233 intersection targets between key phytochemicals and disease. A protein-protein interaction network of 233 common targets was constructed; and six hub targets were acquired with a degree greater than or equal to median, namely TP53, HSP90AA1, STAT3, ESR1, MYC, and RELA. The enrichment analysis suggested that the core targets may exert an impact on anti-inflammatory, immunoregulatory, anti-oxidant and anti-fibrosis functions mainly through the PI3K/ART signaling pathway, Th17 differentiation signaling pathway, inflammatory bowel disease signaling pathway, etcetera. Also, a molecular docking analysis shows that the key phytochemicals have strong affinity for binding to the core targets. Finally, the interaction network of CR, phytochemicals, targets, GO functions, KEGG pathways and UC is constructed. This study indicates that the key phytochemicals in CR have superior drug likeness and bioactivity, and the molecular mechanism of key phytochemicals against UC may be via the signaling pathway mentioned above. The potential and critical pharmacological mechanisms provide a direction for future research.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Haomeng Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shumin Qin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Yang Chunbo Academic Experience Inheritance Studio of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Jia X, Li Z, Guo Y, Ma H, Wang J, Xue Y, Li B, Cai Y, Yang Q. The potential mechanism of huazhuojiedu decoction in the treatment of ulcerative colitis based on network pharmacology and experimental validation. Front Pharmacol 2022; 13:1033874. [PMID: 36313293 PMCID: PMC9614068 DOI: 10.3389/fphar.2022.1033874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Huazhuojiedu decoction (HZJDD), a traditional Chinese medicine prescription, has been clinically proven to be an effective treatment for ulcerative colitis (UC). However, the mechanism of HZJDD in the treatment of UC remains unclear. This study combined network pharmacology with experimental validation to explore the potential mechanism of HZJDD on UC. First, the relationship network diagrams between HZJDD and UC were established based on multiple databases. Then, the HZJDD-UC intersection genes target network was constructed and Gene Ontology-Biological processes (GO-BP) analysis was performed to discover the potential pharmacological mechanism. Finally, the results of GO-BP were verified in dextran sulfate sodium salt (DSS) induced UC rats. The network pharmacology results showed that 119 active components and 146 potential targets were screened for HZJDD, and six of the top 15 biological processes belonged to inflammatory response, cellular response to hypoxia, and cellular response to lipopolysaccharide (LPS). The GO-BP results indicated that the mechanism of HZJDD treatment of UC was related to inflammation, oxidative stress, and the regulation of LPS. Animal experiments showed that HZJDD could significantly reduce the disease activity index (DAI) score, improve colon length, and effectively repair the histomorphological and micromorphological changes in DSS-induced UC rats. Moreover, HZJDD reduced the expressions of CRP, TNF-α, IL-6, LPS, IL-1β, and IL-18; downregulated the activity of MDA; and upregulated the activities of CAT, GSH, and SOD in DSS-induced UC rats. Furthermore, HZJDD suppressed the expression of the NLRP3/caspase-1 signaling pathway at the gene and protein levels to inhibit pyroptosis. Network pharmacology and animal experiments showed that HZJDD exerted a therapeutic effect on DSS-induced UC rats by reducing inflammation, oxidative stress, and restraining the NLRP3/caspase-1 signaling pathway to inhibit pyroptosis.
Collapse
Affiliation(s)
- Xuemei Jia
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Ze Li
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yuxi Guo
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Hongyu Ma
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Traditional Chinese Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Jie Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yucong Xue
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bolin Li
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yanru Cai
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Yanru Cai, ; Qian Yang,
| | - Qian Yang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Yanru Cai, ; Qian Yang,
| |
Collapse
|
10
|
Wang Y, Lin ZJ, Huang J, Chu MZ, Ding XL, Li WJ, Mao QY, Zhang B. An integrated study of Shenling Baizhu San against hyperuricemia: Efficacy evaluation, core target identification and active component discovery. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115450. [PMID: 35688256 DOI: 10.1016/j.jep.2022.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenling Baizhu San (SLBZ) is a famous Traditional Chinese Medicine (TCM) formula that strengthens the spleen for replenishing qi, removing dampness, and inducing diuresis to relieve diarrhea. Combining the TCM interpretation that dampness is a vital pathogenesis factor in hyperuricemia occurrence and development, SLBZ has excellent potential against hyperuricemia from the perspective of TCM theories. AIM OF THE STUDY This study aimed to investigate the efficacy of SLBZ against hyperuricemia and its possible mechanism with emphasis on the active components and the core targets. MATERIALS AND METHODS In the present study, we employed meta-analysis and a hyperuricemia quail model to evaluate the uric acid-lowering effect of SLBZ. Bodyweight, serum uric acid, and excreta uric acid levels in quails were assessed. Subsequently, we analyzed the potential active components and core targets of SLBZ against hyperuricemia by network pharmacology and calculated their interaction using molecular docking. Furthermore, the hyperuricemia rats treated with interfering agents of core targets were established to determine the central role of selected targets in hyperuricemia progression. Besides, we isolated and characterized the primary renal tubular epithelial cells of quails to verify the active components and core targets of SLBZ against hyperuricemia. Western blotting was used to observe the expression of core targets treated with active components under the stimulation of interfering agents. RESULTS Data from meta-analysis and animal experiments showed that SLBZ could work effectively against hyperuricemia. Hyperuricemia quails treated with SLBZ displayed significantly reduced serum uric acid levels accompanied by increased excretion of uric acid. According to network pharmacology and molecular docking results, 34 potential active components and the core target peroxisome proliferator-activated receptor gamma (PPARγ) for SLBZ against hyperuricemia were identified. The decreased serum uric acid levels in hyperuricemia rats treated with rosiglitazone, an agonist of PPARγ, confirms the essential role of PPARγ in the pathological process of hyperuricemia. Moreover, we first successfully isolated and characterized the primary renal tubular epithelial cells of quails and observed enhanced phosphorylation of PPARγ at Ser273 in cells handled with high-level uric acid. Whereas, the enhanced expression of p-PPARγ Ser273 could be down-regulated by luteolin and naringenin, two active components of SLBZ against hyperuricemia. CONCLUSION In summary, SLBZ is a promising anti-hyperuricemia agent, and luteolin and naringenin are the active components for SLBZ against hyperuricemia by down-regulating phosphorylation of PPARγ at Ser273.
Collapse
Affiliation(s)
- Yu Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhi-Jian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jing Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng-Zhen Chu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Li Ding
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen-Jing Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiu-Yue Mao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|