1
|
Hu Z, Li S, Pan W, Wu H, Peng X. Design, synthesis and bioevaluation of novel hydrazide derivatives as enhancers of immunotherapy and DNA-damage response in antitumor therapy. Eur J Med Chem 2025; 291:117601. [PMID: 40233424 DOI: 10.1016/j.ejmech.2025.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
We have designed and synthesized a series of novel hydrazide-based HDAC3 inhibitors, with the representative compound 8ae demonstrating potent HDAC3 inhibitory activity, having an IC50 value of 311 nM (with a selectivity index SI greater than 32 over other HDACs). Compound 8ae also exhibited significant anti-proliferative activity against five types of cancer cells, with an average inhibitory rate IC50 value of 5.036 μM, and was capable of inhibiting the migration, invasion, and wound healing activities of B16-F10 cells. Further studies revealed that 8ae effectively modulates the expression of Ac-H3 within tumor cells and can degrade PD-L1 in tumor cells through the lysosome pathway mediated by cathepsin B (CTSB). Notably, 8ae also possesses favorable pharmacokinetic properties. In in vivo experiments, the combination of 8ae with the PD-L1 inhibitor NP-19 activated the immune system in melanoma-bearing mice, leading to an enhanced anti-tumor immune response (TGI = 65 %). When combined with olaparib, 8ae significantly enhanced tumor suppressive activity (TGI = 88 %) in a breast cancer mouse model and displayed a favorable safety profile. Collectively, 8ae is a promising HDAC3 inhibitor that warrants further exploration in cancer therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Haiyan Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| |
Collapse
|
2
|
Joung H, Yang SR, Lee SB, Liu H. Proteasome inhibitor MG132 modulates signal transduction pathways in ELT3 uterine leiomyoma cells. Exp Ther Med 2025; 29:71. [PMID: 39991715 PMCID: PMC11843184 DOI: 10.3892/etm.2025.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
Uterine leiomyomas, or fibroids, are common benign tumors that affect a significant percentage of women, with treatment options ranging from medication to surgery. Carbobenzoxyl-L-leucyl-L-leucyl-L-leucine (MG132), a proteasome inhibitor, has exhibited potential in treating various cancers by disrupting key cellular processes such as apoptosis and cell cycle regulation. The present study aimed to evaluate the effects of MG132 on the viability, proliferation, apoptosis, and the production of reactive oxygen species (ROS) in Eker leiomyoma tumor-3 (ELT3) uterine leiomyoma cells and to elucidate the underlying molecular mechanisms involved. Cell viability was evaluated using an MTT assay, while cytotoxicity was assessed using a lactate dehydrogenase (LDH) release assay. Colony formation assays assessed the long-term effects of MG132. Apoptosis and cell cycle distribution were analyzed using flow cytometry with Annexin V staining, and ROS production was also measured by flow cytometry. Western blot analysis was performed to examine key proteins related to the cell cycle and apoptosis. The findings of the present study revealed that MG132 significantly reduced the cell viability and impaired colony formation in ELT3 cells, as evidenced by decreased cell viability and increased LDH activity. MG132 treatment significantly increased apoptosis and induced cell cycle arrest at the G2/M phase. Additionally, MG132 increased the levels of ROS, which contributed to ROS-mediated apoptosis. Western blot analysis revealed that MG132 modulated key proteins involved in cell proliferation and apoptosis, including p21, p27, ERK, and caspase-3. Furthermore, MG132 treatment induced autophagy, as indicated by the increased conversion of LC3 I to LC3 II. Overall, MG132 was revealed to exert potent cytotoxic effects on ELT3 uterine leiomyoma cells by inducing ROS-mediated apoptosis and cell cycle arrest, and triggering autophagy. These findings suggest that MG132 provides a proof of concept for targeting the proteasome in uterine leiomyomas.
Collapse
Affiliation(s)
- Hosouk Joung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - So-Ra Yang
- Department of Obstetrics and Gynecology, Chosun University Hospital, Gwangju 61453, Republic of Korea
| | - Su Bin Lee
- Department of Obstetrics and Gynecology, Chosun University Hospital, Gwangju 61453, Republic of Korea
| | - Hyunju Liu
- Department of Obstetrics and Gynecology, Chosun University Hospital, Gwangju 61453, Republic of Korea
- Department of Obstetrics and Gynecology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Han S, Li Y, Zhou Y, Sun M, Hu M, Zhou C, Lin L, Lan J, Lu X, Zhang Q, Liu L, Jin J. Manganese inhibits HBV transcription and promotes HBsAg degradation at non-toxic levels. Int J Biol Macromol 2024; 280:135764. [PMID: 39299429 DOI: 10.1016/j.ijbiomac.2024.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase β-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.
Collapse
Affiliation(s)
- Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| | - Shaowei Han
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuanyuan Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuting Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengdan Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Mingna Hu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Chengcai Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Lu Lin
- Clinical Medical College, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xing Lu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi, China
| | - Lingyun Liu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Department of Hepatobiliary and Pancreatic Surgery, Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
4
|
Li G, Li Y, Liang C, Luo J. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Brief Funct Genomics 2024; 23:418-428. [PMID: 38061910 DOI: 10.1093/bfgp/elad053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 07/22/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA-drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA-drug sensitivity associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Youjun Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
5
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Wang Y, Wang G, Xiang W, Liu X, Jiang M, Hu J. Proteasome activation is critical for cell death induced by inhibitors of polo-like kinase 1 (PLK1) in multiple cancers. Eur J Pharmacol 2024; 972:176558. [PMID: 38614382 DOI: 10.1016/j.ejphar.2024.176558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.
Collapse
Affiliation(s)
- Yufei Wang
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Guihua Wang
- Department of Oncology, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Wei Xiang
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Xueting Liu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Manli Jiang
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Jinyue Hu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha, 410004, China.
| |
Collapse
|
7
|
Park JG, Lim DC, Park JH, Park S, Mok J, Kang KW, Park J. Benzbromarone Induces Targeted Degradation of HSP47 Protein and Improves Hypertrophic Scar Formation. J Invest Dermatol 2024; 144:633-644. [PMID: 37838329 DOI: 10.1016/j.jid.2023.09.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Fibrotic diseases are characterized by the abnormal accumulation of collagen in the extracellular matrix, leading to the functional impairment of various organs. In the skin, excessive collagen deposition manifests as hypertrophic scars and keloids, placing a substantial burden on patients and the healthcare system worldwide. HSP47 is essential for proper collagen assembly and contributes to fibrosis. However, identifying clinically applicable HSP47 inhibitors has been a major pharmaceutical challenge. In this study, we identified benzbromarone (BBR) as an HSP47 inhibitor for hypertrophic scarring treatment. BBR inhibited collagen production and secretion in fibroblasts from patients with keloid by binding to HSP47 and inhibiting the interaction between HSP47 and collagen. Interestingly, BBR not only inhibits HSP47 but also acts as a molecular glue degrader that promotes its proteasome-dependent degradation. Through these molecular mechanisms, BBR effectively reduced hypertrophic scarring in mini pigs and rats with burns and/or excisional skin damage. Thus, these findings suggest that BBR can be used to clinically treat hypertrophic scars and, more generally, fibrotic diseases.
Collapse
Affiliation(s)
- Jung Gyu Park
- Innovo Therapeutics, Daejeon, Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | - Jeong Hwan Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Seoah Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Jongsoo Mok
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Joonghoon Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea.
| |
Collapse
|
8
|
Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res 2024; 21:24-49. [PMID: 38623984 DOI: 10.2174/0115672050301407240408033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
Collapse
Affiliation(s)
| | - Stanley Kojo Opare
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Aravindhan Ganesan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Praveen P N Rao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
10
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
11
|
Oh M, Nam J, Baek A, Seo JH, Chae JI, Lee SY, Chung SK, Park BC, Park SG, Kim J, Jeon YJ. Neuroprotective Effects of Licochalcone D in Oxidative-Stress-Induced Primitive Neural Stem Cells from Parkinson's Disease Patient-Derived iPSCs. Biomedicines 2023; 11:biomedicines11010228. [PMID: 36672736 PMCID: PMC9856162 DOI: 10.3390/biomedicines11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases caused by the loss of dopaminergic neurons in the substantia nigra pars compacta. Although the etiology of PD is still unclear, the death of dopaminergic neurons during PD progression was revealed to be associated with abnormal aggregation of α-synuclein, elevation of oxidative stress, dysfunction of mitochondrial functions, and increased neuroinflammation. In this study, the effects of Licochalcone D (LCD) on MG132-induced neurotoxicity in primitive neural stem cells (pNSCs) derived from reprogrammed iPSCs were investigated. A cell viability assay showed that LCD had anti-apoptotic properties in MG132-induced oxidative-stressed pNSCs. It was confirmed that apoptosis was reduced in pNSCs treated with LCD through 7-AAD/Annexin Ⅴ staining and cleaved caspase3. These effects of LCD were mediated through an interaction with JunD and through the EGFR/AKT and JNK signaling pathways. These findings suggest that LCD could be a potential antioxidant reagent for preventing disease-related pathological phenotypes of PD.
Collapse
Affiliation(s)
- Minyoung Oh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Juhyeon Nam
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Areum Baek
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Young Lee
- Korean Medicine (KM) Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sun-Ku Chung
- Korean Medicine (KM) Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Byoung Chul Park
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- Correspondence: (J.K.); (Y.-J.J.); Tel.: +82-42-860-4478 (J.K.); +82-42-860-4386 (Y.-J.J.)
| | - Young-Joo Jeon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (J.K.); (Y.-J.J.); Tel.: +82-42-860-4478 (J.K.); +82-42-860-4386 (Y.-J.J.)
| |
Collapse
|
12
|
Hezkiy EE, Kumar S, Gahramanov V, Yaglom J, Hesin A, Jadhav SS, Guzev E, Patel S, Avinery E, Firer MA, Sherman MY. Search for Synergistic Drug Combinations to Treat Chronic Lymphocytic Leukemia. Cells 2022; 11:cells11223671. [PMID: 36429097 PMCID: PMC9688317 DOI: 10.3390/cells11223671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Finding synergistic drug combinations is an important area of cancer research. Here, we sought to rationally design synergistic drug combinations with an inhibitor of BTK kinase, ibrutinib, which is used for the treatment of several types of leukemia. We (a) used a pooled shRNA screen to identify genes that protect cells from the drug, (b) identified protective pathways via bioinformatics analysis of these gene sets, and (c) identified drugs that inhibit these pathways. Based on this analysis, we established that inhibitors of proteasome and mTORC1 could synergize with ibrutinib both in vitro and in vivo. We suggest that FDA-approved inhibitors of these pathways could be effectively combined with ibrutinib for the treatment of chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
| | - Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Valid Gahramanov
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Julia Yaglom
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Arkadi Hesin
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | | | - Ekaterina Guzev
- Department of Mathematics, Ariel University, Ariel 40700, Israel
| | - Shivani Patel
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Elena Avinery
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael A. Firer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Michael Y. Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
- Correspondence: ; Tel.: +972-587819472
| |
Collapse
|