1
|
Khan AS, AlAbdali A, Irshad N, AlMusayyab O, AlQahtani N, Shah AT, Akhtar S, Slimani Y. Evaluation of Mechanical and Elemental Properties of Bioceramic-Coated Orthodontic Brackets and Enamel Surface. Eur J Dent 2025; 19:389-398. [PMID: 39293491 DOI: 10.1055/s-0044-1789003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE The aim is to coat orthodontic brackets with two different bioactive materials and to compare the mechanical and morphological properties of coated brackets and tooth surfaces. MATERIALS AND METHODS A total of 120 stainless steel brackets were divided equally into three groups, that is, the uncoated brackets and nanohydroxyapatite (nHA)-coated, and nanobioactive glass (nBG)-coated brackets using a spin coater machine. The brackets were bonded on the enamel surface and underwent remineralization/demineralization cycles for days 1, 7, 14, and 30. At each time interval, the bond strength of the brackets was assessed using mechanical loading. An optical and scanning electron microscope (SEM) were used for surface evaluation, and the adhesive remanent index (ARI) values were obtained and quantified. STATISTICAL ANALYSIS One-way analysis of variance using Tukey's test was used to compare the differences among the groups. RESULTS A uniform distribution of nanoparticles occurred on the surfaces of brackets. The shear bond strength (SBS) showed no significant differences in any tested groups on days 1, 7, and 14. However, control and nBG showed a significant difference from nHA at day 30. On days 7, 14, and 30, the nHA group showed the highest SBS values among the groups. For ARI, most samples showed an adhesive nature of failure at the enamel-brackets interface. The images confirmed the presence of coated particles on brackets and remnants of adhesives after SBS. CONCLUSION This study confirmed that the nHA- and nBG-coated brackets have a high potential for application in orthodontics regarding structural and mechanical properties.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahlam AlAbdali
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nadia Irshad
- Department of Dental Materials, Sharif Medical and Dental College, Lahore, Pakistan
| | - Othoob AlMusayyab
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Norah AlQahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Xu L, Zhang Q, Xu Y, Xu X, Hu M, Xu J, Song Y, Hao Y. Functional modification and antibacterial evaluation of orthodontic adhesives with poly (lysine)-derived carbon dots. RSC Adv 2025; 15:5876-5888. [PMID: 39980985 PMCID: PMC11841671 DOI: 10.1039/d4ra08710k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Fixed appliances used in orthodontic treatment make oral hygiene difficult to maintain, leading to bacterial adhesion around brackets and consequently resulting in white spot lesions (WSLs). After the bracket debonding, the residual adhesive is difficult to remove precisely due to its appearance similar to tooth enamel. In this study, we successfully synthesized small-sized and highly active PL-CDs by one-pot pyrolysis using ε-poly-l-lysine as a precursor. It was incorporated into orthodontic adhesives for multi-function modification. Based on our experimental results, the 3 wt% PL-CDs modified orthodontic adhesive exhibited excellent antibacterial properties and color identifiability. The addition of 3 wt% PL-CDs did not affect the biocompatibility and mechanical properties of the adhesive, and the cell survival rate was up to 80%. Therefore, this study provides a new strategy to solve the two major problems of enamel white spot and adhesive removal in the process of fixed orthodontics, and has important clinical application.
Collapse
Affiliation(s)
- Linlin Xu
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Qianqian Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266001 China +8616622380102
| | - Yongzhi Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266001 China +8616622380102
| | - Xuecheng Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266001 China +8616622380102
| | - Mingchang Hu
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Jidong Xu
- Qingdao Jiaozhou Central Hospital Qingdao 266300 China
| | - Yu Song
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266001 China +8616622380102
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266001 China +8616622380102
| |
Collapse
|
3
|
Lertwisitphon P, Worapasphaiboon Y, Champakanan N, Toneluck A, Naruphontjirakul P, Young AM, Chinli R, Chairatana P, Sucharit S, Panpisut P. Enhancing elemental release and antibacterial properties of resin-based dental sealants with calcium phosphate, bioactive glass, and polylysine. BMC Oral Health 2025; 25:96. [PMID: 39827118 PMCID: PMC11742498 DOI: 10.1186/s12903-025-05489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND This study aimed to develop ion-releasing and antibacterial resin-based dental sealants comprising 3 to 6 wt% monocalcium phosphate monohydrate (MCPM, M), 3 to 6 wt% bioactive glass (BAG, B), and 3 to 6 wt% polylysine (PLS, P). The physical properties, mechanical performance, cytotoxicity, and inhibition of S. mutans biofilm by these materials were subsequently evaluated. METHODS Five experimental dental sealants were formulated as follows: F1 (M6B6P6), F2 (M6B6P3), F3 (M3B3P6), F4 (M3B3P3), and F5 (M0B0P0, serving as the control). ClinproXT (CP, 3 M, Saint Paul, MN, USA) was used for commercial comparison. The degree of monomer conversion (DC) was determined using attenuated total reflectance-Fourier transform infrared spectroscopy (n = 5). The biaxial flexural strength (n = 6) and Vickers surface microhardness (n = 5) of the materials were evaluated after a 24-hour immersion in water. The element release over 4 weeks was measured using inductively coupled plasma-optical emission spectrometry (ICP-OES) (n = 3). The cell viability of mouse fibrosarcoma cells exposed to the extract was assessed via an MTT assay (n = 3). Additionally, the inhibition of S. mutans biofilm was tested (n = 3). Statistical analysis was conducted using one-way ANOVA and the Tukey HSD test. RESULTS The lowest DC among experimental sealants was obtained from F1 (66 ± 4%), which was significantly higher than CP (54 ± 2%, p < 0.001). The lowest biaxial flexural strength was obtained from F3 (131 ± 47 MPa). This was comparable to that of CP (140 ± 58 MPa, p = 0.992). The lowest surface microhardness among experimental materials was detected with F2 (19 ± 2 Vickers hardness number), which was higher than that of CP (12 ± 1 Vickers hardness number, p = 0.003). Furthermore, high cell viability of > 90% after exposure to extracts from the experimental materials was detected, which was similar to that observed with CP. Additionally, the experimental materials exhibited higher Ca and P release compared to CP and showed a potential trend for reducing S. mutans biofilm formation. Increasing additive concentrations exhibited minimal effects on material properties, except for enhanced elemental release and a slight reduction in BFM with higher PLS content. CONCLUSION The experimental sealants provided sufficient physical and mechanical strength and maintained cell viability and bacterial inhibition with higher elemental release than the commercial product.
Collapse
Grants
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
- RGNS 64-123 Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand
Collapse
Affiliation(s)
| | | | | | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Rattapha Chinli
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand.
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
4
|
Jiramongkhonsuk J, Runglikhitcharoen S, Naruphontjirakul P, Panpisut P. The in vitro assessment of resin coating materials containing calcium phosphate, bioactive glass, and polylysine for glass ionomer cement restorations. Biomater Investig Dent 2025; 12:42783. [PMID: 40124687 PMCID: PMC11926424 DOI: 10.2340/biid.v12.42783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/18/2024] [Indexed: 03/25/2025] Open
Abstract
Objective Glass ionomer cements (GICs) require protective surface coatings to enhance their clinical performance. This study developed novel protective resin coatings for GICs containing monocalcium phosphate monohydrate (MCPM), bioactive glass nanoparticles (BAGs), and poly-L-lysine (PLS) and evaluated their physical, mechanical, and biological properties when applied to GICs. Materials and methods Experimental resin coating materials were formulated with 5-10 wt% of MCPM, BAGs, and PLS. The degree of monomer conversion was measured usingAttenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) (n = 6). GICs coated with the experimental materials were evaluated for biaxial flexural strength and modulus after 24 h water immersion using a universal testing machine (n = 8). Vickers surface microhardness up to 4 weeks of water immersion was also determined (n = 5). Fluoride and elemental release in water were analyzed using a fluoride-specific electrode and inductively coupled plasma optical emission spectrometry (n = 3). Cell viability was assessed using an MTT assay with mouse fibrosarcoma (n = 3). A commercial resin coating (EQUIA Forte Coat, EQ) served as control. Data were analyzed using one-way ANOVA and Tukey HSD test. Results While EQ showed higher monomer conversion (87%) compared to experimental materials (72-74%) (p < 0.05), GICs coated with experimental materials demonstrated comparable strength to EQ-coated GICs. The experimental coatings exhibited similar F, Al, Na, and Si releases to EQ-coated GICs, with enhanced P release. All experimental coatings exhibited comparable cell viability (>70%) to the commercial material. Conclusion The novel GIC protective coatings containing MCPM, BAGs, and PLS demonstrated acceptable in vitro performance comparable to commercial materials while potentially offering enhanced remineralization through increased elemental release.
Collapse
Affiliation(s)
| | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
5
|
Li Z, Li Z, Wang J, Liao L, Li X, Zhang Z, Yang X, Yu X, Fan B, Li B, Hai J, Zhang B. Binary Doping of Strontium-Magnesium to Bioactive Glasses to Enhance Antibacterial and Osteogenic Effects. ACS OMEGA 2025; 10:215-229. [PMID: 39829480 PMCID: PMC11739949 DOI: 10.1021/acsomega.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Bone defects that exceed the critical defect value, resulting from fractures and diseases, are often difficult to heal. Although bone tissue engineering is a promising treatment for extensive osseous defects, orthopedic-implant-related infections increase the likelihood of failure. Bioactive glass (BG) has been widely used in the manufacture of artificial bone scaffolds, owing to its excellent biocompatibility and osteoinductivity. Nevertheless, considering that infection conditions and trauma can affect the osteogenic capacity of bioactive glass, this study combined BG with magnesium and strontium to promote osteogenesis and confer significant antimicrobial activity. Novel bioactive glass doped with magnesium-strontium (BGMSN) with good biocompatibility, excellent antibacterial properties, and promising osteogenic induction ability was constructed from 45S5, Mg, and Sr carbonates via a melt-quenching approach. The results of an in vitro cell biocompatibility study indicated that the BGMSN exhibited good cellular compatibility. Furthermore, osteogenic alkaline phosphatase, osteocalcin, and osteopontin genes were upregulated upon BGMSN/MC3T3-E1 coculture. BGMSN exhibited potent in vitro antibacterial effects against Staphylococcus aureus, Escherichia coli, and Streptococcus mutans. Animal experiments further demonstrated the exceptional bone-inducing ability of BGMSN. Accordingly, owing to their excellent antimicrobial properties, BGMSN can be used for bone regeneration, particularly under infected conditions.
Collapse
Affiliation(s)
- Zhige Li
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Ziyuan Li
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jiao Wang
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lingzi Liao
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xinjie Li
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zhidong Zhang
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xin Yang
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xiangxue Yu
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Baoquan Fan
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Bo Li
- State
Key Laboratory of Military Stomatology, Department of Oral Implants,
School of Stomatology, The Fourth Military
Medical University, Xi’an 710032, China
| | - Jun Hai
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute
of Chemical Physics, Chinese Academy of
Sciences, Lanzhou 730000, China
| | - Baoping Zhang
- School
of Stomatology, Lanzhou University, Lanzhou 730000, China
- Key
Laboratory of Mechanics on Disaster and Environment in Western China,
Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Institute
of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Niu Q, Chen S, Bai R, Lu Y, Peng L, Han B, Yu T. Dynamics of the oral microbiome during orthodontic treatment and antimicrobial advances for orthodontic appliances. iScience 2024; 27:111458. [PMID: 39720528 PMCID: PMC11667053 DOI: 10.1016/j.isci.2024.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The oral microbiome plays an important role in human health, and an imbalance of the oral microbiome could lead to oral and systemic diseases. Orthodontic treatment is an effective method to correct malocclusion. However, it is associated with many adverse effects, including white spot lesions, caries, gingivitis, periodontitis, halitosis, and even some systematic diseases. Undoubtedly, increased difficulty in oral hygiene maintenance and oral microbial disturbances are the main factors in developing these adverse effects. The present article briefly illustrates the characteristics of different ecological niches (including saliva, soft tissue surfaces of the oral mucosa, and hard tissue surfaces of the teeth) inhabited by oral microorganisms. According to the investigations conducted since 2014, we comprehensively elucidate the alterations of the oral microbiome in saliva, dental plaque, and other ecological niches after the introduction of orthodontic appliances. Finally, we provide a detailed review of recent advances in the antimicrobial properties of different orthodontic appliances. This article will provide researchers with a profound understanding of the underlying mechanisms of the effects of orthodontic appliances on human health and provide direction for further research on the antimicrobial properties of orthodontic appliances.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Yuntao Lu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Liying Peng
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| |
Collapse
|
7
|
Sun Y, Shi M, Niu B, Xu X, Xia W, Deng C. Mg-Sr-Ca containing bioactive glass nanoparticles hydrogel modified mineralized collagen scaffold for bone repair. J Biomater Appl 2024; 39:117-128. [PMID: 38775351 DOI: 10.1177/08853282241254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The aim of this study is to explore the therapeutic effects of Mg-Sr-Ca containing bioactive glass nanoparticles sodium alginate hydrogel modified mineralized collagen scaffold (Mg-Sr-Ca-BGNs-SA-MC) on the repair of osteoporotic bone defect. During the study, Mg-Sr-Ca containing bioactive glass nanoparticles (Mg-Sr-Ca-BGNs) were synthesized using the sol-gel method, and the Mg-Sr-Ca-BGNs-SA-MC scaffold was synthesized by a simple method. The Mg-Sr-Ca-BGNs and the Mg-Sr-Ca-BGNs-SA-MC scaffold were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The elements of Mg, Sr, Ca and Si were effectively integrated into Mg-Sr-Ca-BGNs. SEM analysis revealed the presence of Mg-Sr-Ca-BGNs on the scaffold's surface. Furthermore, the cytotoxicity of the scaffolds were assessed using a live/dead assay. The result of the live/dead assay demonstrated that the scaffold materials were non-toxic to cell growth. More importantly, the in vivo study indicated that implanted scaffold promoted tissue regeneration and integration with newly formed bone. Overall, the Mg-Sr-Ca-BGNs-SA-MC scaffold is suitable for guided bone regeneration and beneficial to repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Yi Sun
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Min Shi
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Bowen Niu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Xiangyang Xu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Wen Xia
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Chao Deng
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| |
Collapse
|
8
|
Panpisut P, Toneluck A, Khamsuk C, Channasanon S, Tanodekaew S, Monmaturapoj N, Naruphontjirakul P. The development of resin-coating materials for enhancing elemental release of coated glass ionomer cements. Heliyon 2024; 10:e34512. [PMID: 39113968 PMCID: PMC11305317 DOI: 10.1016/j.heliyon.2024.e34512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
This study aimed to develop resin coatings containing monocalcium phosphate monohydrate (MCPM), Sr/F-doped bioactive glass (Sr/F-BAGs), and pre-reacted glass ionomer fillers (SPG) that enhance ion release without detrimentally affecting the mechanical properties of GIC. The objective of this study was to evaluate the degree of monomer conversion (DC), biaxial flexural strength, surface microhardness, and ion release of the GICs coated with experimental coating materials compared to a commercial product (EQUIA Coat, EC). Four experimental resin coating materials containing 10-20 wt% of MCPM with Sr/F-BAGs and 5-10 wt% SPG were prepared. The DC of the coating material was determined using ATR-FTIR. The flexural strength and surface microhardness of the coated GICs were assessed. Fluoride and elemental (Ca,P,Sr,Si,Al) release were measured using fluoride-specific electrodes and ICP-OES. The DC of the experimental coating material (60-69 %) was higher than that of EC (55 %). The strength of GICs coated with experimental materials (35-40 MPa) was comparable to EC (37 MPa). However, their surface microhardness (13-24 VHN) was lower than EC (44 VHN). The experimental coating materials reduced fluoride release by ∼43 %, similar to EC (∼40 %). However, experimental coating materials promoted higher P and Sr release than EC. In conclusion, GICs coated with the experimental resin coating containing ion-releasing additives exhibited mechanical properties similar to those of the commercial product. The new coating materials promoted a higher level of ion release for GICs. These properties could potentially enhance remineralizing actions for the coated GICs.
Collapse
Affiliation(s)
- Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, 12120, Thailand
| | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
| | - Chutikarn Khamsuk
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Somruethai Channasanon
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Siriporn Tanodekaew
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Naruporn Monmaturapoj
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| |
Collapse
|
9
|
He L, Zhang W, Liu J, Pan Y, Li S, Xie Y. Applications of nanotechnology in orthodontics: a comprehensive review of tooth movement, antibacterial properties, friction reduction, and corrosion resistance. Biomed Eng Online 2024; 23:72. [PMID: 39054528 PMCID: PMC11270802 DOI: 10.1186/s12938-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Nanotechnology has contributed important innovations to medicine and dentistry, and has also offered various applications to the field of orthodontics. Intraoral appliances must function in a complex environment that includes digestive enzymes, a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. Nanotechnology can improve the performance of orthodontic brackets and archwires by reducing friction, inhibiting bacterial growth and biofilm formation, optimizing tooth remineralization, improving corrosion resistance and biocompatibility of metal substrates, and accelerating or decelerating orthodontic tooth movement through the application of novel nanocoatings, nanoelectromechanical systems, and nanorobots. This comprehensive review systematically explores the orthodontic applications of nanotechnology, particularly its impacts on tooth movement, antibacterial activity, friction reduction, and corrosion resistance. A search across PubMed, the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 28 met our inclusion criteria. These selected studies highlight the significant benefits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate that advancements brought by nanotechnology may facilitate the future delivery of more effective and comfortable orthodontic care.
Collapse
Affiliation(s)
- Longwen He
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Wenzhong Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Junfeng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yuemei Pan
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yueqiang Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China.
| |
Collapse
|
10
|
Leenutaphong N, Phantumvanit P, Young AM, Panpisut P. Evaluation of setting kinetics, mechanical strength, ion release, and cytotoxicity of high-strength glass ionomer cement contained elastomeric micelles. BMC Oral Health 2024; 24:713. [PMID: 38902666 PMCID: PMC11191184 DOI: 10.1186/s12903-024-04468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Low mechanical properties are the main limitation of glass ionomer cements (GICs). The incorporation of elastomeric micelles is expected to enhance the strength of GICs without detrimentally affecting their physical properties and biocompatibility. This study compared the chemical and mechanical properties, as well as the cytotoxicity, of elastomeric micelles-containing glass ionomer cement (DeltaFil, DT) with commonly used materials, including EQUIA Forte Fil (EF), Fuji IX GP Extra (F9), and Ketac Molar (KT). METHOD Powder particles of GICs were examined with SEM-EDX. Setting kinetics were assessed using ATR-FTIR. Biaxial flexural strength/modulus and Vickers surface microhardness were measured after immersion in water for 24 h and 4 weeks. The release of F, Al, Sr, and P in water over 8 weeks was analyzed using a fluoride-specific electrode and ICP-OES. The toxicity of the material extract on mouse fibroblasts was also evaluated. RESULTS High fluoride levels in the powder were detected with EF and F9. DT demonstrated an initial delay followed by a faster acid reaction compared to other cements, suggesting an improved snap set. DT also exhibited superior flexural strength than other materials at both 24 h and 4 weeks but lower surface microhardness (p < 0.05). EF and F9 showed higher release of F, Al, and P than DT and KT. There was no statistically significant difference in fibroblast viability among the tested materials (p > 0.05). CONCLUSIONS Elastomeric micelles-containing glass ionomer cement (DT) exhibited satisfactory mechanical properties and cytocompatibility compared with other materials. DT could, therefore, potentially be considered an alternative high-strength GIC for load-bearing restorations.
Collapse
Affiliation(s)
| | | | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand.
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
11
|
Almoammar S, Kamran MA, Alnazeh AA, Almagbol M, Al Jearah MM, Mannakandath ML. Orthodontic adhesive loaded with different proportions of ZrO 2 silver-doped nanoparticles: An in vitro μTBS, SEM, EDX, FTIR, and antimicrobial analysis. Microsc Res Tech 2024; 87:1146-1156. [PMID: 38278778 DOI: 10.1002/jemt.24503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Zirconium dioxide silver-doped nanoparticles (ZrO2AgDNPs) impacts the adhesive material in terms of its physical characteristics, antimicrobial properties, degree of conversion (DC), and micro-tensile bond strength (μTBS) of orthodontic brackets to the enamel surface. A comprehensive methodological analysis utilizing a range of analytical techniques, including scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, DC analysis, and μTBS testing. A light-curable orthodontic adhesive, specifically Transbond XT, was combined with ZrO2AgDNPs at 2.5% and 5%. As a control, an adhesive with no incorporation of ZrO2AgDNPs was also prepared. The tooth samples were divided into three groups based on the weightage of NPs: group 1: 0% ZrO2AgDNPs (control), group 2: 2.5 wt% ZrO2AgDNPs, and group 3: 5 wt% ZrO2AgDNPs. EDX graph demonstrated silver (Ag), Zirconium (Zr), and Oxygen (O2), The antibacterial efficacy of adhesives with different concentrations of NPs (0%, 2.5%, and 5%) was assessed using the pour plate method. The FTIR spectra were analyzed to identify peaks at 1607 cm-1 corresponding to aromatic CC bonds and the peaks at 1638 cm-1 indicating the presence of aliphatic CC bonds. The μTBS was assessed using universal testing machine (UTM) and bond failure of orthodontic brackets was seen using adhesive remanent index (ARI) analysis. Kruskal-Wallis test assessed the disparities in survival rates of Streptococcus mutans. Analysis of variance (ANOVA) and post hoc Tukey multiple comparisons test calculated μTBS values. The lowest μTBS was observed in group 1 adhesive loaded with 0% ZrO2AgDNPs (21.25 ± 1.22 MPa). Whereas, the highest μTBS was found in group 3 (26.19 ± 1.07 MPa) adhesive loaded with 5% ZrO2AgDNPs. ZrO2AgDNPs in orthodontic adhesive improved μTBS and has acceptable antibacterial activity against S mutans. ZrO2AgDNPs at 5% by weight can be used in orthodontic adhesive alternative to the conventional method of orthodontic adhesive for bracket bonding. RESEARCH HIGHLIGHTS: The highest μTBS was found in orthodontic adhesive loaded with 5% ZrO2AgDNPs. ARI analysis indicates that the majority of the failures fell between 0 and 1 among all investigated groups. The colony-forming unit count of S. mutans was significantly less in orthodontic adhesive loaded with nanoparticles compared with control. The 0% ZrO2AgDNPs adhesive showed the highest DC.
Collapse
Affiliation(s)
- Salem Almoammar
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Abdullah Kamran
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Abdullah A Alnazeh
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Almagbol
- Department of Community and Periodontics, Faculty of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | - Master Luqman Mannakandath
- Department of Oral Diagnosis and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Srisomboon S, Intharah T, Jarujareet U, Toneluck A, Panpisut P. The in vitro assessment of rheological properties and dentin remineralization of saliva substitutes containing propolis and aloe vera extracts. PLoS One 2024; 19:e0304156. [PMID: 38776324 PMCID: PMC11111055 DOI: 10.1371/journal.pone.0304156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Saliva substitutes with enhanced dentin remineralization properties were expected to help manage caries progression in patients with xerostomia. This in vitro study examined the rheological properties and remineralization action of experimental saliva substitutes containing propolis extract and aloe vera extract on demineralized dentin. Four experimental saliva substitutes were formulated with varying concentrations of propolis extract (P) and aloe vera extract (A) were prepared. A commercial saliva substitute (Biotene Oral Rinse) was used as a commercial comparison. The rheological properties and viscosity of these materials were measured using a strain-controlled rheometer (n = 3). The remineralizing actions of saliva substitutes on demineralized dentin after 2 weeks were determined using ATR-FTIR and SEM-EDX (n = 8). The results were expressed as a percentage increase in the mineral-to-matrix ratio. Biotene demonstrated a significantly higher viscosity (13.5 mPa·s) than experimental saliva substitutes (p<0.05). The addition of extracts increased the viscosity of the saliva substitutes from 4.7 mPa·s to 5.2 mPa·s. All formulations showed minimal shear thinning behavior, which was the viscoelastic properties of natural saliva. The formulation containing 5 wt% of propolis exhibited the highest increase in the median mineral-to-matrix ratio (25.48%). The SEM-EDX analysis revealed substantial mineral precipitation in demineralized dentin, especially in formulations with 5 wt% or 2.5 wt% of propolis. The effect of the aloe vera extract was minimal. The addition of propolis and aloe vera extracts increased the viscosity of saliva substitutes. the addition of propolis for 2.5 or 5 wt% to saliva substitutes increased mineral apatite precipitation and tubule occlusion. To conclude, the saliva substitute containing propolis extract demonstrated superior remineralizing actions compared with those containing only aloe vera extract.
Collapse
Affiliation(s)
| | - Thanapong Intharah
- Visual Intelligence Laboratory, Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Ungkarn Jarujareet
- NECTEC, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | | |
Collapse
|
13
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
14
|
Gavinho SR, Hammami I, Jakka SK, Teixeira SS, Silva JC, Borges JP, Graça MPF. Influence of the Addition of Zinc, Strontium, or Magnesium Oxides to the Bioglass 45S5 Network on Electrical Behavior. MATERIALS (BASEL, SWITZERLAND) 2024; 17:499. [PMID: 38276437 PMCID: PMC10820946 DOI: 10.3390/ma17020499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
45S5 Bioglass has been widely used in regenerative medicine due to its ability to dissolve when inserted into the body. Its typically amorphous structure allows for an ideal dissolution rate for the formation of the hydroxyapatite layer, which is important for the development of new bone. This bioactive capacity can also be controlled by adding other oxides (e.g., SrO, ZnO, and MgO) to the 45S5 Bioglass network or by storing electrical charge. Ions such as zinc, magnesium, and strontium allow for specific biological responses to be added, such as antibacterial action and the ability to increase the rate of osteoblast proliferation. The charge storage capacity allows for a higher rate of bioactivity to be achieved, allowing for faster attachment to the host bone, decreasing the patient's recovery time. Therefore, it is necessary to understand the variation in the structure of the bioglass with regard to the amount of non-bridging oxygens (NBOs), which is important for the bioactivity rate not to be compromised, and also its influence on the electrical behavior relevant to its potential as electrical charge storage. Thus, several bioactive glass compositions were synthesized based on the 45S5 Bioglass formulation with the addition of various concentrations (0.25, 0.5, 1, and 2, mol%) of zinc, strontium, or magnesium oxides. The influence of the insertion of these oxides on the network was evaluated by studying the amount of NBOs using Raman spectroscopy and their implication on the electrical behavior. Electrical characterization was performed in ac (alternating current) and dc (direct current) regimes.
Collapse
Affiliation(s)
- Sílvia Rodrigues Gavinho
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Sílvia Soreto Teixeira
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
15
|
Thanyasiri S, Naruphontjirakul P, Padunglappisit C, Mirchandani B, Young AM, Panpisut P. Assessment of physical/mechanical properties and cytotoxicity of dual-cured resin cements containing Sr-bioactive glass nanoparticles and calcium phosphate. Dent Mater J 2023; 42:806-817. [PMID: 37880134 DOI: 10.4012/dmj.2023-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The aim was to develop dual-cured resin cements containing Sr-bioactive glass nanoparticles (Sr-BGNPs; 5 or 10 wt%) and monocalcium phosphate monohydrate (MCPM; 3 or 6 wt%). Effects of additives on degree of monomer conversion (DC), biaxial flexural strength/modulus, shear bond strength (SBS), mass/volume change, color stability, ion release, and cytotoxicity were examined. Controls included material without reactive fillers and Panavia SA Plus (PV). Experimental cements showed higher DC than PV regardless of light activation (p<0.05). Mean SBS and color stability were comparable between experimental cements and PV. Cell viability upon the exposure to sample extracts of experimental cements was 80%-92%. High additive concentrations led to lower strength and modulus than PV (p<0.05). The additives increased mass change, reduced color stability, and promoted ion release. The experimental resin cements demonstrated acceptable mechanical/chemical properties and cytotoxicity. The additives reduced the strength but provided ion release, a desirable action to prevent recurrent caries.
Collapse
Affiliation(s)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi
| | | | - Bharat Mirchandani
- Faculty of Dentistry, Datta Meghe Institute of Higher Education & Research
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University
| |
Collapse
|
16
|
Padunglappisit C, Suwanprateep N, Chaiwerawattana H, Naruphontjirakul P, Panpisut P. An in vitro assessment of biaxial flexural strength, degree of monomer conversion, color stability, and ion release in provisional restorations containing Sr-bioactive glass nanoparticles. Biomater Investig Dent 2023; 10:2265393. [PMID: 38204473 PMCID: PMC10763873 DOI: 10.1080/26415275.2023.2265393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 01/12/2024] Open
Abstract
This study examined the mechanical and chemical properties of an experimental provisional restoration containing Sr-bioactive glass nanoparticles (Sr-BGNPs) compared to commercial provisional materials. The experimental material (TempS10) contained dimethacrylate monomers with added 10 wt% Sr-BGNPs. The degree of monomer conversion (DC) of self-curing (n = 5), biaxial flexural strength (BFS)/modulus (BFM) (n = 5), and color changes (ΔE*00) of materials in red wine (n = 5) were determined. Additionally, ion release (Ca, P, and Sr) in water at 2 weeks was examined (n = 3). The commercial materials tested included polymethyl methacrylate-based provisional material (Unifast) and bis-acrylic materials (Protemp4 and Cooltemp). TempS10 exhibited a comparable degree of monomer conversion (49%) to that of Protemp4 (60%) and Cooltemp (54%) (p > 0.05). The DC of Unifast (81%) was significantly higher than that of other materials (p < 0.05). TempS10 showed a BFS (126 MPa) similar to Cooltemp (102 MPa) and Unifast (123 MPa), but lower than Protemp4 (194 MPa). The immersion time for 2 weeks exhibited no detrimental effect on the strength and modulus of all materials. The highest ΔE*00 at 24 h and 2 weeks was observed with TempS10, followed by Cooltemp, Unifast, and Protemp4. Only TempS10 showed a detectable amount of Ca (0.69 ppm), P (0.12 ppm), and Sr (3.01 ppm). The experimental provisional resin restoration containing Sr-BGNPs demonstrated polymerization and strength comparable to those of bis-acryl provisional restorations but with the added benefit of ion-releasing properties. However, the experimental material demonstrated unsatisfactory color stability.
Collapse
Affiliation(s)
| | | | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
17
|
Gavinho SR, Pádua AS, Holz LIV, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2717. [PMID: 37836358 PMCID: PMC10574208 DOI: 10.3390/nano13192717] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023]
Abstract
The non-surgical treatments are being required to reconstruct damaged tissue, prioritizing our body's natural healing process. Thus, the use of bioactive materials such as bioactive glass has been studied to support the repair and restoration of hard and soft tissue. Thus, in this work Bioglass 45S5 was developed, adding 1 and 2%mol of SrO or MgO and the physical and biological properties were evaluated. The addition of MgO and SrO at the studied concentrations promoted the slight increase in non-bridging oxygens number, observed through the temperature shift in phase transitions to lower values compared to Bioglass 45S5. The insertion of the ions also showed a positive effect on Saos-2 cell viability, decreasing the cytotoxic of Bioglass 45S5. Besides the Ca/P ratio on the pellets surface demonstrating no evidence of higher reactivity between Bioglass 45S5 and Bioglass with Sr and Mg, micrographs show that at 24 h the Ca/P rich layer is denser than in Bioglass 45S5 after the contact with simulated body fluid. The samples with Sr and Mg show a higher antibacterial effect compared to Bioglass 45S5. The addition of the studied ions may benefit the biological response of Bioglass 45S5 in dental applications as scaffolds or coatings.
Collapse
Affiliation(s)
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | | | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Manuel Almeida Valente
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (M.P.F.G.)
| | | |
Collapse
|
18
|
Potiprapanpong W, Naruphontjirakul P, Khamsuk C, Channasanon S, Toneluck A, Tanodekaew S, Monmaturapoj N, Young AM, Panpisut P. Assessment of Mechanical/Chemical Properties and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Sr/F-Bioactive Glass Nanoparticles and Methacrylate Functionalized Polyacids. Int J Mol Sci 2023; 24:10231. [PMID: 37373383 DOI: 10.3390/ijms241210231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study prepared low-toxicity, elemental-releasing resin-modified glass ionomer cements (RMGICs). The effect of 2-hydroxyethyl methacrylate (HEMA, 0 or 5 wt%) and Sr/F-bioactive glass nanoparticles (Sr/F-BGNPs, 5 or 10 wt%) on chemical/mechanical properties and cytotoxicity were examined. Commercial RMGIC (Vitrebond, VB) and calcium silicate cement (Theracal LC, TC) were used as comparisons. Adding HEMA and increasing Sr/F-BGNPs concentration decreased monomer conversion and enhanced elemental release but without significant effect on cytotoxicity. Rising Sr/F-BGNPs reduced the strength of the materials. The degree of monomer conversion of VB (96%) was much higher than that of the experimental RMGICs (21-51%) and TC (28%). The highest biaxial flexural strength of experimental materials (31 MPa) was significantly lower than VB (46 MPa) (p < 0.01) but higher than TC (24 MPa). The RMGICs with 5 wt% HEMA showed higher cumulative fluoride release (137 ppm) than VB (88 ppm) (p < 0.01). Unlike VB, all experimental RMGICs showed Ca, P, and Sr release. Cell viability in the presence of extracts from experimental RMGICs (89-98%) and TC (93%) was significantly higher than for VB (4%). Experimental RMGICs showed desirable physical/mechanical properties with lower toxicity than the commercial material.
Collapse
Affiliation(s)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Chutikarn Khamsuk
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Somruethai Channasanon
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
| | - Siriporn Tanodekaew
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Naruporn Monmaturapoj
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
19
|
Muradbegovic A, Par M, Panduric V, Zugec P, Tauböck TT, Attin T, Tarle Z, Marovic D. Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glass. J Funct Biomater 2023; 14:298. [PMID: 37367262 DOI: 10.3390/jfb14060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The aim of the study was to evaluate microhardness, mass changes during 1-year water immersion, water sorption/solubility, and calcium phosphate precipitation of experimental composites functionalized with 5-40 wt% of two types of bioactive glass (BG): 45S5 or a customized low-sodium fluoride-containing formulation. Vickers microhardness was evaluated after simulated aging (water storage and thermocycling), water sorption and solubility were tested according to ISO 4049, and calcium phosphate precipitation was studied by scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. For the composites containing BG 45S5, a significant reduction in microhardness was observed with increasing BG amount. In contrast, 5 wt% of the customized BG resulted in statistically similar microhardness to the control material, while higher BG amounts (20 and 40 wt%) resulted in a significant improvement in microhardness. Water sorption was more pronounced for composites containing BG 45S5, increasing 7-fold compared to the control material, while the corresponding increase for the customized BG was only 2-fold. Solubility increased with higher amounts of BG, with an abrupt increase at 20 and 40 wt% of BG 45S5. Calcium phosphate was precipitated by all composites with BG amounts of 10 wt% or more. The improved properties of the composites functionalized with the customized BG indicate better mechanical, chemical, and dimensional stability without compromising the potential for calcium phosphate precipitation.
Collapse
Affiliation(s)
- Alen Muradbegovic
- Muradbegović Dental Clinic, Malkočeva 3, 75000 Tuzla, Bosnia and Herzegovina
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Vlatko Panduric
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Paula Zugec
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Özel C, Çevlik CB, Özarslan AC, Emir C, Elalmis YB, Yucel S. Evaluation of biocomposite putty with strontium and zinc co-doped 45S5 bioactive glass and sodium hyaluronate. Int J Biol Macromol 2023; 242:124901. [PMID: 37210057 DOI: 10.1016/j.ijbiomac.2023.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The application of powder or granule formed bioactive glasses in the defect area with the help of a liquid carrier to fill the defects is a subject of interest and is still open to development. In this study, it was aimed to prepare biocomposites of bioactive glasses incorporating different co-dopants with a carrier biopolymer and to create a fluidic material (Sr and Zn co-doped 45S5 bioactive glasses‑sodium hyaluronate). All biocomposite samples were pseudoplastic fluid type, which may be suitable for defect filling and had excellent bioactivity behaviors confirmed by FTIR, SEM-EDS and XRD. Biocomposites with Sr and Zn co-doped bioactive glass had higher bioactivity considering the crystallinity of hydroxyapatite formations compared to biocomposite with undoped bioactive glasses. Biocomposites with high bioactive glass content had hydroxyapatite formations with higher crystallinity compared to biocomposites with low bioactive glass. Furthermore, all biocomposite samples showed non-cytotoxic effect on the L929 cells up to a certain concentration. However, biocomposites with undoped bioactive glass showed cytotoxic effects at lower concentrations compared to biocomposites with co-doped bioactive glass. Thus, biocomposite putties utilizing Sr and Zn co-doped bioactive glasses may be advantageous for orthopedic applications due to their specified rheological, bioactivity, and biocompatibility properties.
Collapse
Affiliation(s)
- Cem Özel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey.
| | - Cem Batuhan Çevlik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey
| | - Ali Can Özarslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Ceren Emir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey; Alanya Alaaddin Keykubat University, Faculty of Rafet Kayis Engineering, Genetic and Bioengineering Department, Antalya, Turkey
| | - Yeliz Basaran Elalmis
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Sevil Yucel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| |
Collapse
|
21
|
Effects of an orthodontic primer containing amorphous fluorinated calcium phosphate nanoparticles on enamel white spot lesions. J Mech Behav Biomed Mater 2023; 137:105567. [PMID: 36379092 DOI: 10.1016/j.jmbbm.2022.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The study investigated the effects of an orthodontic primer containing amorphous fluorinated calcium phosphate (AFCP) nanoparticles on enamel white spot lesions (WSLs). MATERIALS AND METHODS The AFCP nanoparticles were prepared and incorporated into Transbond XT Primer. Thirty-two human enamel slices were highly polished and randomly divided into four groups: no part covered (control), half covered with a primer containing 0 wt%, 25 wt%, and 35 wt% AFCP. Subsequently, samples were challenged by a modified pH-cycling and characterized by color measurement, micro-computed tomography, and scanning electron microscope (SEM). The bonding properties of the primers containing AFCP were assessed using shear bond strength test, and the mouse fibroblasts (L929) were employed to evaluate the cytotoxicity. RESULTS When the enamel was challenged by pH cycling, 25 wt% and 35 wt% AFCP groups exhibited less color change (ΔE) and less mineral loss than the control and 0 wt% AFCP groups. The SEM images showed that the original microstructural integrity and mineral deposition rate of the enamel surface were better in the 25 wt% and 35 wt% AFCP groups. In particular, the 35 wt% AFCP group exhibited the best performance after 3 weeks of pH cycling. The shear bond strength and cell viability revealed no significant difference among the tested groups (P > 0.05). CONCLUSION Using the primer containing 35 wt% AFCP might be a promising strategy for preventing the occurrence and development of WSLs during orthodontic treatment.
Collapse
|
22
|
Panpisut P, Praesuwatsilp N, Bawornworatham P, Naruphontjirakul P, Patntirapong S, Young AM. Assessment of Physical/Mechanical Performance of Dental Resin Sealants Containing Sr-Bioactive Glass Nanoparticles and Calcium Phosphate. Polymers (Basel) 2022; 14:polym14245436. [PMID: 36559804 PMCID: PMC9783923 DOI: 10.3390/polym14245436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to assess the chemical/mechanical properties of ion-releasing dental sealants containing strontium-bioactive glass nanoparticles (Sr-BGNPs) and monocalcium phosphate monohydrate (MCPM). Two experimental sealants, TS1 (10 wt% Sr-BGNPs and 2 wt% MCPM) and TS2 (5 wt% Sr-BGNPs and 4 wt% MCPM), were prepared. Commercial controls were ClinproXT (CP) and BeautiSealant (BT). The monomer conversion (DC) was tested using ATR−FTIR (n = 5). The biaxial flexural strength (BFS) and modulus (BFM) were determined (n = 5) following 24 h and 7 days of immersion in water. The Vickers surface microhardness (SH) after 1 day in acetic acid (conc) versus water was tested (n = 5). The bulk and surface calcium phosphate precipitation in simulated body fluid was examined under SEM-EDX. The ion release at 4 weeks was analyzed using ICP-MS (n = 5). The DC after 40 s of light exposure of TS1 (43%) and TS2 (46%) was significantly lower than that of CP (58%) and BT (61%) (p < 0.05). The average BFS of TS1 (103 MPa), TS2 (123 MPa), and BT (94 MPa) were lower than that of CP (173 MPa). The average BFM and SH of TS1 (2.2 GPa, 19 VHN) and TS2 (2.0 GPa, 16 VHN) were higher than that of CP (1.6 GPa, 11 VHN) and BT (1.3 GPa, 12 VHN). TS1 showed higher Ca, P, and Sr release than TS2. Bulk calcium phosphate precipitation was detected on TS1 and TS2 suggesting some ion exchange. In conclusion, the DC of experimental sealants was lower than that of commercial materials, but their mechanical properties were within the acceptable ranges. The released ions may support remineralizing actions.
Collapse
Affiliation(s)
- Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| | | | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Somying Patntirapong
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| | - Anne M. Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
23
|
Gad MM, Abu-Rashid K, Alkhaldi A, Alshehri O, Khan SQ. Evaluation of the effectiveness of bioactive glass fillers against Candida albicans adhesion to PMMA denture base materials: An in vitro study. Saudi Dent J 2022; 34:730-737. [PMID: 36570574 PMCID: PMC9767839 DOI: 10.1016/j.sdentj.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Background Dentures with antimicrobial properties are desirable for preventing Candida albicans adhesion. This study was to assess the effectiveness of bioactive glass (BAG) on C. albicans adhesion, surface roughness, and hardness of denture base materials. Methods Heat-polymerized (HP) and autopolymerized (AP) acrylic resins were used to fabricate 240 disk specimens (120/material, 60/C. albicans, 60/surface roughness and hardness). Specimens were divided into five groups (n = 10) based on the BAG concentration: 0.5, 1.5, 3, 5, and 7.5 wt% of the acrylic powder, with a control group comprised of unmodified specimens. Direct culture method was used to assess C. albicans adhesion. A profilometer and Vickers hardness test were used to measure surface roughness and hardness respectively. Analysis of variance (ANOVA) and post hoc Tukey's test were used for data analysis (α = 0.05). Results BAG addition significantly decreased the C. albicans count when compared with the control group (P < 0.001) for both HP and AP. Regarding surface roughness, there was no change in the HP acrylic resins (P > 0.05), while the AP acrylic resins exhibited significantly higher surface roughness with BAG addition (P < 0.001). The hardness of the HP and AP acrylic resins were significantly higher with the addition of BAG (P < 0.001). Conclusions The addition of BAG to HP and AP acrylic resins effectively decreases C. albicans adhesion. The roughness of AP acrylic resins increases with the addition of BAG, while the hardness of both HP and AP acrylic resins increase with the addition of BAG.
Collapse
Affiliation(s)
- Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia,Corresponding author at: College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia. Phone number: 00966592502080.
| | - Khalid Abu-Rashid
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Adel Alkhaldi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Omar Alshehri
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soban Q. Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
24
|
Scheau C, Didilescu AC, Caruntu C. Medical Application of Functional Biomaterials-The Future Is Now. J Funct Biomater 2022; 13:jfb13040244. [PMID: 36412885 PMCID: PMC9680248 DOI: 10.3390/jfb13040244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
We live in unprecedented times [...].
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (C.S.); (A.C.D.); (C.C.)
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (C.S.); (A.C.D.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
- Correspondence: (C.S.); (A.C.D.); (C.C.)
| |
Collapse
|
25
|
Iosif C, Cuc S, Prodan D, Moldovan M, Petean I, Labunet A, Barbu Tudoran L, Badea IC, Man SC, Badea ME, Chifor R. Mechanical Properties of Orthodontic Cements and Their Behavior in Acidic Environments. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7904. [PMID: 36431389 PMCID: PMC9697370 DOI: 10.3390/ma15227904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The present research is focused on three different classes of orthodontic cements: resin composites (e.g., BracePaste); resin-modified glass ionomer RMGIC (e.g., Fuji Ortho) and resin cement (e.g., Transbond). Their mechanical properties such as compressive strength, diametral tensile strength and flexural strength were correlated with the samples' microstructures, liquid absorption, and solubility in liquid. The results show that the best compressive (100 MPa) and flexural strength (75 Mpa) was obtained by BracePaste and the best diametral tensile strength was obtained by Transbond (230 MPa). The lowestvalues were obtained by Fuji Ortho RMGIC. The elastic modulus is relatively high around 14 GPa for BracePaste, and Fuji Ortho and Transbond have only 7 GPa. The samples were also subjected to artificial saliva and tested in different acidic environments such as Coca-Cola and Red Bull. Their absorption and solubility were investigated at different times ranging from 1 day to 21 days. Fuji Ortho presents the highest liquid absorption followed by Transbond, the artificial saliva has the best absorption and Red Bull has the lowest absorption. The best resistance to the liquids was obtained by BracePaste in all environments. Coca-Cola presents values four times greater than the ones observed for artificial saliva. Solubility tests show that BracePaste is more soluble in artificial saliva, and Fuji Ortho and Transbond are more soluble in Red Bull and Coca-Cola. Scanning electron microscopy (SEM) images evidenced a compact structure for BracePaste in all environments sustaining the lower liquid absorption values. Fuji Ortho and Transbond present a fissure network allowing the liquid to carry out in-depth penetration of materials. SEM observations are in good agreement with the atomic force microscopy (AFM) results. The surface roughness decreases with the acidity increasing for BracePaste meanwhile it increases with the acidity for Fuji Ortho and Transbond. In conclusion: BracePaste is recommended for long-term orthodontic treatment for patients who regularly consume acidic beverages, Fuji Ortho is recommended for short-term orthodontic treatment for patients who regularly consume acidic beverages and Transbond is recommended for orthodontic treatment over an average time period for patients who do not regularly consume acidic beverages.
Collapse
Affiliation(s)
- Cristina Iosif
- Department of Prosthetic Dentistry and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Stanca Cuc
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Marioara Moldovan
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Anca Labunet
- Department of Prosthetic Dentistry and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Iulia Clara Badea
- Dental Prevention Department, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania
| | - Sorin Claudiu Man
- Mother and Child Department, 3Rd Department of Paediatrics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Campeni Street, 400217 Cluj-Napoca, Romania
| | - Mîndra Eugenia Badea
- Dental Prevention Department, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania
| | - Radu Chifor
- Dental Prevention Department, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Mirchandani B, Padunglappisit C, Toneluck A, Naruphontjirakul P, Panpisut P. Effects of Sr/F-Bioactive Glass Nanoparticles and Calcium Phosphate on Monomer Conversion, Biaxial Flexural Strength, Surface Microhardness, Mass/Volume Changes, and Color Stability of Dual-Cured Dental Composites for Core Build-Up Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1897. [PMID: 35683752 PMCID: PMC9181985 DOI: 10.3390/nano12111897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
This study prepared composites for core build-up containing Sr/F bioactive glass nanoparticles (Sr/F-BGNPs) and monocalcium phosphate monohydrate (MCPM) to prevent dental caries. The effect of the additives on the physical/mechanical properties of the materials was examined. Dual-cured resin composites were prepared using dimethacrylate monomers with added Sr/F-BGNPs (5 or 10 wt%) and MCPM (3 or 6 wt%). The additives reduced the light-activated monomer conversion by ~10%, but their effect on the conversion upon self-curing was negligible. The conversions of light-curing or self-curing polymerization of the experimental materials were greater than that of the commercial material. The additives reduced biaxial flexural strength (191 to 155 MPa), modulus (4.4 to 3.3), and surface microhardness (53 to 45 VHN). These values were comparable to that of the commercial material or within the acceptable range of the standard. The changes in the experimental composites' mass and volume (~1%) were similar to that of the commercial comparison. The color change of the commercial material (1.0) was lower than that of the experimental composites (1.5-5.8). The addition of Sr/F-BGNPs and MCPM negatively affected the physical/mechanical properties of the composites, but the results were satisfactory except for color stability.
Collapse
Affiliation(s)
- Bharat Mirchandani
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
| | - Chawal Padunglappisit
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
| | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
27
|
Alfaawaz YF, Alamri R, Almohsen F, Shabab S, Alhamdan MM, Al Ahdal K, Farooq I, Vohra F, Abduljabbar T. Adhesive Bond Integrity of Experimental Zinc Oxide Nanoparticles Incorporated Dentin Adhesive: An SEM, EDX, μTBS, and Rheometric Analysis. SCANNING 2022; 2022:3477886. [PMID: 36016673 PMCID: PMC9385357 DOI: 10.1155/2022/3477886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Our study is aimed at preparing an experimental adhesive (EA) and assessing the influence of adding 5-10 wt.% concentrations of zinc oxide (ZnO) nanoparticles on the adhesive's mechanical properties. METHODS Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy were employed to investigate the morphology and elemental distribution of the filler nanoparticles. To examine the adhesive properties, microtensile bond strength (μTBS) testing, an investigation of the rheological properties, degree of conversion (DC), and analysis of the interface between the adhesive and dentin were carried out. RESULTS The SEM micrographs of ZnO nanoparticles demonstrated spherical agglomerates. The EDX plotting confirmed the incidence of Zn and oxygen (O) in the ZnO nanoparticles. The highest μTBS was observed for nonthermocycled (NTC) 5 wt.% ZnO group (32.11 ± 3.60 MPa), followed by the NTC-10 wt.% ZnO group (30.04 ± 3.24 MPa). Most of the failures observed were adhesive in nature. A gradual reduction in the viscosity was observed at higher angular frequencies, and the addition of 5 and 10 wt.% ZnO to the composition of the EA lowered its viscosity. The 5 wt.% ZnO group demonstrated suitable dentin interaction by showing the formation of resin tags, while for the 10 wt.% ZnO group, compromised resin tag formation was detected. DC was significantly higher in the 0% ZnO (EA) group. CONCLUSION The reinforcement of the EA with 5 and 10 wt.% concentrations of ZnO nanoparticles produced an improvement in the adhesive's μTBS. However, a reduced viscosity was observed for both nanoparticle-reinforced adhesives, and a negotiated dentin interaction was seen for 10 wt.% ZnO adhesive group. Further research exploring the influence of more filler concentrations on diverse adhesive properties is recommended.
Collapse
Affiliation(s)
- Yasser F. Alfaawaz
- Department of Restorative Dental Sciences College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Renad Alamri
- Dental Intern, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fatimah Almohsen
- Dental Intern, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sana Shabab
- Department of Restorative Dental Sciences College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Alhamdan
- Department of Prosthetic dental sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Khold Al Ahdal
- Department of Restorative Dental Sciences College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5G 1G6
| | - Fahim Vohra
- Department of Prosthetic dental sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University 11545, Saudi Arabia
| |
Collapse
|