1
|
Guérin M, Vandevenne M, Matagne A, Aucher W, Verdon J, Paoli E, Ducrotoy J, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Selection and characterization of DNA aptamers targeting the surface Borrelia protein CspZ with high-throughput cross-over SELEX. Commun Biol 2025; 8:632. [PMID: 40251423 PMCID: PMC12008269 DOI: 10.1038/s42003-025-08034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Lyme borreliosis (LB) is the most prevalent tick-borne illness, with an estimated 700 000 cases annually in the United States and Europe. The LB diagnosis based on a two-tiered serology remains controversial due to its indirect nature and low sensitivity during the early stage of the disease. Aptamers are single-stranded DNA or RNA oligonucleotides that exhibit high selectivity and specificity for their target due to their unique three-dimensional structure. By applying cross-over-SELEX process, an enrichment of DNA oligonucleotide sequences against a surface protein of Borrelia, named CspZ, has been performed and monitored using absorbance at 260 nm, melting curves and NGS analyses. Beyond sequence enrichment, oligonucleotides binding to CspZ were observed during the selection rounds by Dot Blot and beads assays. Thirteen unique and highly redundant oligonucleotide sequences were further characterized using multiple approaches such as Dot Blot, BioLayer Interferometry and Surface Plasmon Resonance. The selected aptamers showed KD values from tens of nanomolar to the micromolar range by BLI and SPR. Two aptamers, Apta9 and Apta10, characterized by flow cytometry and epifluorescence microscopy, were able to specifically recognize Borrelia burgdorferi sensu stricto. This strategy holds promise for the development of an improved diagnostic assay.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Marylène Vandevenne
- Robotein®, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - André Matagne
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
- Laboratory of Enzymology and Protein Folding, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Willy Aucher
- Laboratoire Ecologie & Biologie des Interactions (EBI), CNRS UMR 7267, Université de Poitiers, 86073, Poitiers, France
| | - Julien Verdon
- Laboratoire Ecologie & Biologie des Interactions (EBI), CNRS UMR 7267, Université de Poitiers, 86073, Poitiers, France
| | - Emmeline Paoli
- Laboratoire Ecologie & Biologie des Interactions (EBI), CNRS UMR 7267, Université de Poitiers, 86073, Poitiers, France
| | - Jules Ducrotoy
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Stéphane Octave
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Irene Maffucci
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France.
| |
Collapse
|
2
|
Silwal AP, Thennakoon SKS, Jahan R, Arya SP, Postema RM, Timilsina HP, Reynolds AM, Kokensparger KB, Tan X. Aptamer-Assisted DNA SELEX: Dual-Site Targeting of a Single Protein. ACS Biomater Sci Eng 2025. [PMID: 40016918 DOI: 10.1021/acsbiomaterials.4c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Heterobivalent fusion aptamers that target a single protein show significant promise for studying protein-protein interactions. However, a major challenge is finding two distinct aptamers that can simultaneously recognize the same protein. In this study, we used a novel technique called Aptamer-Assisted DNA SELEX (AADS) to isolate two distinct aptamers capable of recognizing different sites on the programmed death-ligand 1 (PD-L1) protein. Initially, Aptamer 1 (P1C2) was identified by using conventional DNA SELEX targeting the PD-L1 protein. Subsequently, Aptamer 2 (P1CSC) was obtained via AADS, which was designed to bind to the PD-L1/P1C2 complex. After confirming that both aptamers could simultaneously recognize the PD-L1 protein, we engineered fusion aptamers by optimizing their orientation and linker sequences, resulting in the creation of the optimized fusion aptamer, P1CSC-T7-P1C1. Our fusion aptamer targeting PD-L1 demonstrated remarkable specificity and affinity, effectively inhibiting PD-1/PD-L1 interactions at both the protein and cellular levels. These findings highlight the potential of fusion aptamers via AADS as powerful tools for targeting the PD-L1 protein and cancer cells (A549 cells). This represents a significant advancement in aptamer-based molecular recognition and has the potential to drive innovation as a versatile method for targeting a wide range of proteins.
Collapse
Affiliation(s)
- Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | | | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Kaytelee Brooke Kokensparger
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
3
|
Chen Y, Huang Y, Yang YR. DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and In Situ Electron Cryotomography. JACS AU 2025; 5:17-27. [PMID: 39886579 PMCID: PMC11775714 DOI: 10.1021/jacsau.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
DNA nanostructures present new opportunities as Nanotags for electron microscopy (EM) imaging, leveraging their high programmability, unique shapes, biomolecule conjugation capability, and stability compatible with standard cryogenic sample preparation protocols. This perspective highlights the potential of DNA Nanotags to enable high-throughput multiplexed EM analysis and facilitate in situ particle identification for cryogenic electron tomography (cryo-ET). Meanwhile, applying Nanotags in live-cell environments requires the efficient cellular uptake of intact structures and successful cytosolic migration. Promising strategies such as employing direct cytosolic delivery platforms and expressing RNA-based Nanotags in situ are discussed, while more systematic studies are needed to fully understand the intracellular trafficking and achieve precise localization of DNA Nanotags.
Collapse
Affiliation(s)
- Yuanfang Chen
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqian Huang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhe R. Yang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhou Z, Chen X, Jiang S, Chen Z, Wang S, Ren Y, Fan X, Le T. A Label-Free Aptasensor for the Detection of Sulfaquinoxaline Using AuNPs and Aptamer in Water Environment. BIOSENSORS 2025; 15:30. [PMID: 39852081 PMCID: PMC11763722 DOI: 10.3390/bios15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025]
Abstract
Sulfaquinoxaline (SQX) is widely utilized in aquaculture and animal husbandry due to its broad antimicrobial spectrum and low cost. However, it is difficult to degrade, and there are relevant residues in the aquatic environment, which could be harmful to both the ecological environment and human health. As a new recognition molecule, the aptamer can be recognized with SQX with high affinity and specificity, and the aptamer is no longer adsorbed to AuNPs after binding to SQX, which weakens the catalytic effect of AuNPs. Consequently, an aptasensor for the detection of SQX was successfully developed. This aptasensor exhibits a linear range of 40-640 ng/mL, with a detection limit of 36.95 ng/mL, demonstrating both sensitivity and selectivity. The recoveries of this aptasensor in water samples ranged from 90 to 109.9%, which was quite in line with high-performance liquid chromatography. These findings suggest that the aptasensor is a valuable tool for detecting SQX in aqueous environmental samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaodong Fan
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
5
|
Kumagai K, Okubo H, Amano R, Kozu T, Ochiai M, Horiuchi M, Sakamoto T. Selection of aptamers using β-1,3-glucan recognition protein-tagged proteins and curdlan beads. J Biochem 2023; 174:433-440. [PMID: 37500079 DOI: 10.1093/jb/mvad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
RNA aptamersare nucleic acids that are obtained using the systematic evolution of ligands by exponential enrichment (SELEX) method. When using conventional selection methods to immobilize target proteins on matrix beads using protein tags, sequences are obtained that bind not only to the target proteins but also to the protein tags and matrix beads. In this study, we performed SELEX using β-1,3-glucan recognition protein (GRP)-tags and curdlan beads to immobilize the acute myeloid leukaemia 1 (AML1) Runt domain (RD) and analysed the enrichment of aptamers using high-throughput sequencing. Comparison of aptamer enrichment using the GRP-tag and His-tag suggested that aptamers were enriched using the GRP-tag as well as using the His-tag. Furthermore, surface plasmon resonance analysis revealed that the aptamer did not bind to the GRP-tag and that the conjugation of the GRP-tag to RD weakened the interaction between the aptamer and RD. The GRP-tag could have acted as a competitor to reduce weakly bound RNAs. Therefore, the affinity system of the GRP-tagged proteins and curdlan beads is suitable for obtaining specific aptamers using SELEX.
Collapse
Key Words
- SELEX.Abbreviations:
AML1, acute myeloid leukaemia 1; βGRP, β-1,3-glucan recognition protein; GST, glutathione S-transferase; His-tag, poly histidine tag; HTS, high-throughput sequencing; MBP, maltose-binding protein; RD, Runt domain; RUNX1, RUNX family transcription factor 1; SELEX, systematic evolution of ligands by exponential enrichment; SPR, surface plasmon resonance
- aptamer
- curdlan
- βGRP
Collapse
Affiliation(s)
- Kazuyuki Kumagai
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Hiroki Okubo
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryo Amano
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, 780 Komuro, Ina, Kitaadachi, Saitama 362-0806, Japan
| | - Masanori Ochiai
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Masataka Horiuchi
- Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido, 1757 Kanazawa, Toubetsu, Ishikari, Hokkaido 061-0293, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
6
|
Chen X, Yang L, Tang J, Wen X, Zheng X, Chen L, Li J, Xie Y, Le T. An AuNPs-Based Fluorescent Sensor with Truncated Aptamer for Detection of Sulfaquinoxaline in Water. BIOSENSORS 2022; 12:bios12070513. [PMID: 35884316 PMCID: PMC9312917 DOI: 10.3390/bios12070513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
Herein, we developed a novel truncation technique for aptamer sequences to fabricate highly sensitive aptasensors based on molecular docking and molecular dynamics simulations. The binding mechanism and energy composition of the aptamer/sulfaquinoxaline (SQX) complexes were investigated. We successfully obtained a new SQX-specific aptamer (SBA28-1: CCCTAGGGG) with high affinity (Kd = 27.36 nM) and high specificity determined using graphene oxide. This aptamer has a unique stem-loop structure that can bind to SQX. Then, we fabricated a fluorescence aptasensor based on SBA28-1, gold nanoparticles (AuNPs), and rhodamine B (RhoB) that presented a good linear range of 1.25–160 ng/mL and a limit of detection of 1.04 ng/mL. When used to analyze water samples, the aptasensor presented acceptable recovery rates of 93.1–100.1% and coefficients of variation (CVs) of 2.2–10.2%. In conclusion, the fluorescence aptasensor can accurately and sensitively detect SQX in water samples and has good application prospects.
Collapse
Affiliation(s)
- Xingyue Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Lulan Yang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Jiaming Tang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Xu Wen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Xiaoling Zheng
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Lingling Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Jiaqi Li
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Yong Xie
- Bioassay 3D Reconstruction Laboratory, Chongqing College of Electronic Engineering, Chongqing 401331, China
- Correspondence: (Y.X.); (T.L.)
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
- Correspondence: (Y.X.); (T.L.)
| |
Collapse
|