1
|
Bai X, Nielsen SD, Kunisaki KM, Trøseid M. Pulmonary comorbidities in people with HIV- the microbiome connection. Curr Opin HIV AIDS 2024; 19:246-252. [PMID: 38935049 DOI: 10.1097/coh.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW To report recent evidence on associations between human microbiome, particularly airway and gut, and pulmonary comorbidities in people with HIV (PWH). Furthermore, we explore how changes in the microbiome may contribute to pulmonary immune dysregulation and higher rates of pulmonary comorbidities among PWH. Finally, we propose future directions in the field. RECENT FINDINGS Increased risk of pulmonary comorbidities and rapid lung function decline have been reported in even well treated PWH. Altered microbiota profiles have been reported in PWH with pulmonary comorbidities and rapid lung function decline as compared to those without. The most consistent data have been the association between HIV-related pulmonary comorbidities, lung and oral microbiota dysbiosis, which has been also associated with distinct respiratory mucosal inflammatory profiles and short-term mortality. However, a possible causal link remains to be elucidated. SUMMARY Associations between the lung and oral microbiome, HIV-associated pulmonary comorbidities and rapid lung function decline have been reported in recent studies. Yet the underlying mechanism underpinning the observed associations is largely unknown and substantial knowledge gaps remain. Future research is warranted to unveil the role and mechanism of human microbiome from different anatomical compartments in relation to pulmonary comorbidities in PWH.
Collapse
Affiliation(s)
- Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ken M Kunisaki
- Minneapolis Veterans Affairs Healthcare System
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Zhuo Q, Zhang X, Zhang K, Chen C, Huang Z, Xu Y. The gut and lung microbiota in pulmonary tuberculosis: susceptibility, function, and new insights into treatment. Expert Rev Anti Infect Ther 2023; 21:1355-1364. [PMID: 37970631 DOI: 10.1080/14787210.2023.2283036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (Mtb) that poses a major threat to human health. AREAS COVERED Herein, we aim to review the alteration of the microbiota in gut and respiratory during TB development, the potential function and mechanisms of microbiota in the pathogenesis of Mtb infection, and the impact of antibiotic treatment on the microbiota. In addition, we discuss the potential new paradigm for the use of microbiota-based treatments such as probiotics and prebiotics in the treatment of TB. EXPERT OPINION Studies have shown that trillions of micro-organisms live in the human gut and respiratory tract, acting as gatekeepers in maintaining immune homeostasis and respiratory physiology and playing a beneficial or hostile role in the development of TB. Anti-TB antibiotics may cause microecological imbalances in the gut and respiratory tract, and microbiome-based therapeutics may be a promising strategy for TB treatment. Appropriate probiotics and prebiotics supplementation, along with antimycobacterial treatment, will improve the therapeutic effect of TB treatment and protect the gut and respiratory microbiota from dysbiosis.
Collapse
Affiliation(s)
- Qiqi Zhuo
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyi Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kehong Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chan Chen
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Huang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Otdushkina LY, Zakharova YV, Kholodov AA, Pyanzova TV. Microbiological evaluation of probiotic therapy in patients with pulmonary tuberculosis. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023; 13:517-525. [DOI: 10.15789/2220-7619-meo-7223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Patients with pulmonary tuberculosis and multiple pathogen resistance (MDR) develop persistent disorders of the intestinal microbiome during prolonged multicomponent chemotherapy requiring correction. However, there is limited data on the use of bacterial drugs in patients with tuberculosis followed by assessing their effectiveness. The aim of the study was to evaluate changes in the intestinal microbiome after a course of probiotics along with anti-tuberculosis chemotherapy in patients with MDR tuberculosis.
Materials and methods. The design a prospective small-cohort study (n = 30). Patients with pulmonary tuberculosis received anti-tuberculosis drugs according to the IV or V regimen, the median of the doses taken was 34.5 (30; 57.5); gastrointestinal syndrome was recorded in all study subjects. Probiotic therapy was applied by using a preparation containing Bifidobacterium bifidum and B. animalis and Lactobacillus casei, L. plantarum, L. delbrueckii subsp.bulgaricus, L. acidophilus. The course of therapy comprised 21 days,1 capsule twice a day. Before and 7 days after probiotics therapy, studies on composition of the intestinal microbiota were carried out, the frequency of virulence factors Enterococcus spp., Staphylococcus spp., Candida spp. was examined; fatty acid composition and activity of enterococcal organic acid production were studied.
Results. After a course of probiotics, a significant increase in lactobacillus titers was recorded from 5.2 (4.0; 6.0) to 6.1 (6.0; 8.0) lg CFU/g (p = 0.05). The frequency of mucosal colonization by Candida fungi and lactose-negative Escherichia decreased by 2-fold (p = 0.001) and 3-fold (p = 0.05), respectively. The frequency of detected virulent strains significantly decreased: hemolysin-producing staphylococci by 9 times (p = 0.009), enterococci with gelatinase activity by 6 times. E. faecalis membrane oleic acid level significantly increased (C9-C18:1) (p = 0.03). In E. faecium, cis-7-palmitoleic acid (C7-C16:1) and oleic (C9-C18:1) fatty acid level increased by 2-fold (p = 0.05), and for linoleic acid (C18:2) by 4 time (p = 0.04) accompanied by elevated acid formation by 1.5 times.
Conclusion. A single course of probiotic therapy in patients with pulmonary tuberculosis leads to qualitative microbiome changes, which are characterized by decreased levels of conditionally pathogenic microorganisms with virulent properties and altered composition of the enterococcal cell membrane accompanied by their increased biochemical activity.
Collapse
|
5
|
Kayongo A, Bartolomaeus TUP, Birkner T, Markó L, Löber U, Kigozi E, Atugonza C, Munana R, Mawanda D, Sekibira R, Uwimaana E, Alupo P, Kalyesubula R, Knauf F, Siddharthan T, Bagaya BS, Kateete DP, Joloba ML, Sewankambo NK, Jjingo D, Kirenga B, Checkley W, Forslund SK. Sputum Microbiome and Chronic Obstructive Pulmonary Disease in a Rural Ugandan Cohort of Well-Controlled HIV Infection. Microbiol Spectr 2023; 11:e0213921. [PMID: 36790203 PMCID: PMC10100697 DOI: 10.1128/spectrum.02139-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Sub-Saharan Africa has increased morbidity and mortality related to chronic obstructive pulmonary disease (COPD). COPD among people living with HIV (PLWH) has not been well studied in this region, where HIV/AIDS is endemic. Increasing evidence suggests that respiratory microbial composition plays a role in COPD severity. Therefore, we aimed to investigate microbiome patterns and associations among PLWH with COPD in Sub-Saharan Africa. We conducted a cross-sectional study of 200 adults stratified by HIV and COPD in rural Uganda. Induced sputum samples were collected as an easy-to-obtain proxy for the lower respiratory tract microbiota. We performed 16S rRNA gene sequencing and used PICRUSt2 (version 2.2.3) to infer the functional profiles of the microbial community. We used a statistical tool to detect changes in specific taxa that searches and adjusts for confounding factors such as antiretroviral therapy (ART), age, sex, and other participant characteristics. We could cluster the microbial community into three community types whose distribution was shown to be significantly impacted by HIV. Some genera, e.g., Veillonella, Actinomyces, Atopobium, and Filifactor, were significantly enriched in HIV-infected individuals, while the COPD status was significantly associated with Gammaproteobacteria and Selenomonas abundance. Furthermore, reduced bacterial richness and significant enrichment in Campylobacter were associated with HIV-COPD comorbidity. Functional prediction using PICRUSt2 revealed a significant depletion in glutamate degradation capacity pathways in HIV-positive patients. A comparison of our findings with an HIV cohort from the United Kingdom revealed significant differences in the sputum microbiome composition, irrespective of viral suppression. IMPORTANCE Even with ART available, HIV-infected individuals are at high risk of suffering comorbidities, as shown by the high prevalence of noninfectious lung diseases in the HIV population. Recent studies have suggested a role for the respiratory microbiota in driving chronic lung inflammation. The respiratory microbiota was significantly altered among PLWH, with disease persisting up to 3 years post-ART initiation and HIV suppression. The community structure and diversity of the sputum microbiota in COPD are associated with disease severity and clinical outcomes, both in stable COPD and during exacerbations. Therefore, a better understanding of the sputum microbiome among PLWH could improve COPD prognostic and risk stratification strategies. In this study, we observed that in a virologically suppressed HIV cohort in rural Uganda, we could show differences in sputum microbiota stratified by HIV and COPD, reduced bacterial richness, and significant enrichment in Campylobacter associated with HIV-COPD comorbidity.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Makerere University, College of Health Sciences, Department of Immunology and Molecular Biology, Kampala, Uganda
| | - Theda Ulrike Patricia Bartolomaeus
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Till Birkner
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Lajos Markó
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Ulrike Löber
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Edgar Kigozi
- Makerere University, College of Health Sciences, Department of Immunology and Molecular Biology, Kampala, Uganda
| | - Carolyne Atugonza
- Makerere University, College of Health Sciences, Department of Immunology and Molecular Biology, Kampala, Uganda
| | - Richard Munana
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Denis Mawanda
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rogers Sekibira
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Esther Uwimaana
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Makerere University, College of Health Sciences, Department of Immunology and Molecular Biology, Kampala, Uganda
| | - Patricia Alupo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Robert Kalyesubula
- African Community Center for Social Sustainability (ACCESS), Department of Research, Nakaseke, Uganda
- Makerere University, College of Health Sciences, Department of Medicine, Kampala, Uganda
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Trishul Siddharthan
- University of Miami, School of Medicine, Division of pulmonary and critical care medicine, Miami, Florida, USA
| | - Bernard S. Bagaya
- Makerere University, College of Health Sciences, Department of Immunology and Molecular Biology, Kampala, Uganda
| | - David P. Kateete
- Makerere University, College of Health Sciences, Department of Immunology and Molecular Biology, Kampala, Uganda
| | - Moses L. Joloba
- Makerere University, College of Health Sciences, Department of Immunology and Molecular Biology, Kampala, Uganda
| | - Nelson K. Sewankambo
- Makerere University, College of Health Sciences, Department of Medicine, Kampala, Uganda
| | - Daudi Jjingo
- Makerere University, College of Computing and Information Sciences, Department of Computer Science, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Infectious Diseases Institute, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Makerere University, College of Health Sciences, Department of Medicine, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sofia K. Forslund
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|