1
|
Dey S, Nayak AK, Rajaram H, Das S. Exploitative stress within Bacillus subtilis biofilm determines the spatial distribution of pleomorphic cells. Microbiol Res 2025; 292:128034. [PMID: 39729737 DOI: 10.1016/j.micres.2024.128034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations. We hypothesized that pleomorphism also exists within the biofilm, which can be considered as the fundamental niche for bacteria. We report a distinct pattern of cell size variation throughout the biofilm of Bacillus subtilis. Cell size heterogeneity was observed in biofilm development, wherein the frequency of long cells is higher in outer regions, whereas lower in inner regions. Moreover, compared to planktonic cells, bacteria in the biofilm mode reduce their geometric ratio from 8.34 to 3.69 and 2.65 in the outer and inner regions, respectively. There were no significant differences observed in nutrient diffusion from the outer to the inner region, and more than 73 % of cells in the inner region were viable. However, the inner and middle regions were more acidic than the outer of the biofilm. Conclusively, growth rate-independent cell size reduction at low pH suggests that the resulting phenotype switching within biofilm was observed due to the pH gradient of neutral to acidic from the outer to the core of the biofilm. This gradient of H+ ions concentration may create exploitative stress within the biofilm, which could favor specific pleomorphic cells to thrive in their specialized niches. By understanding the cell size variation in response to the local environment, we propose a model of biofilm formation by pleomorphic cells.
Collapse
Affiliation(s)
- Sumon Dey
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ankit Kumar Nayak
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Institute, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Damyanova T, Stancheva R, Leseva MN, Dimitrova PA, Paunova-Krasteva T, Borisova D, Kamenova K, Petrov PD, Veleva R, Zhivkova I, Topouzova-Hristova T, Haladjova E, Stoitsova S. Gram Negative Biofilms: Structural and Functional Responses to Destruction by Antibiotic-Loaded Mixed Polymeric Micelles. Microorganisms 2024; 12:2670. [PMID: 39770872 PMCID: PMC11728461 DOI: 10.3390/microorganisms12122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Biofilms are a well-known multifactorial virulence factor with a pivotal role in chronic bacterial infections. Their pathogenicity is determined by the combination of strain-specific mechanisms of virulence and the biofilm extracellular matrix (ECM) protecting the bacteria from the host immune defense and the action of antibacterials. The successful antibiofilm agents should combine antibacterial activity and good biocompatibility with the capacity to penetrate through the ECM. The objective of the study is the elaboration of biofilm-ECM-destructive drug delivery systems: mixed polymeric micelles (MPMs) based on a cationic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA35-b-PCL70-b-PDMAEMA35) and a non-ionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO100-b-PPO65-b-PEO100) triblock copolymers, loaded with ciprofloxacin or azithromycin. The MPMs were applied on 24 h pre-formed biofilms of Escherichia coli and Pseudomonas aeruginosa (laboratory strains and clinical isolates). The results showed that the MPMs were able to destruct the biofilms, and the viability experiments supported drug delivery. The biofilm response to the MPMs loaded with the two antibiotics revealed two distinct patterns of action. These were registered on the level of both bacterial cell-structural alterations (demonstrated by scanning electron microscopy) and the interaction with host tissues (ex vivo biofilm infection model on skin samples with tests on nitric oxide and interleukin (IL)-17A production).
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| | - Rumena Stancheva
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Milena N. Leseva
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria (P.A.D.)
| | - Petya A. Dimitrova
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria (P.A.D.)
| | - Tsvetelina Paunova-Krasteva
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| | - Dayana Borisova
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| | - Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Ralitsa Veleva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Ivelina Zhivkova
- National Reference Laboratory “Control and Monitoring of Antimicrobial Resistance”, Department of Clinical Microbiology, National Center of Infectious and Parasitic Disease, Yanko Sakuzov Blvd. 26, 1504 Sofia, Bulgaria;
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Stoyanka Stoitsova
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| |
Collapse
|
3
|
Valverde-Pozo J, Paredes JM, García-Rubiño ME, Girón MD, Salto R, Alvarez-Pez JM, Talavera EM. Advanced Imaging Methodology in Bacterial Biofilms with a Fluorescent Enzymatic Sensor for pepN Activity. BIOSENSORS 2024; 14:424. [PMID: 39329799 PMCID: PMC11430670 DOI: 10.3390/bios14090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024]
Abstract
This research explores the use of the pepN activity fluorescent sensor DCM-Ala in bacterial biofilms, emphasizing its significance due to the critical role of biofilms in various biological processes. Advanced imaging techniques were employed to visualize pepN activity, introducing a novel approach to examining biofilm maturity. We found that the overexpression of pepN increases the ability of E. coli to form biofilm. The findings demonstrate varying levels of pepN activity throughout biofilm development, suggesting potential applications in biofilm research and management. The results indicate that the fluorescent emission from this sensor could serve as a reliable indicator of biofilm maturity, and the imaging techniques developed could enhance our understanding and control of biofilm-related processes. This work highlights the importance of innovative methods in biofilm study and opens new avenues for utilizing chemical emissions in biofilm management.
Collapse
Affiliation(s)
- Javier Valverde-Pozo
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Jose M Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - María Eugenia García-Rubiño
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - María Dolores Girón
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Jose M Alvarez-Pez
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Eva M Talavera
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| |
Collapse
|
4
|
Mishra A, Tabassum N, Aggarwal A, Kim YM, Khan F. Artificial Intelligence-Driven Analysis of Antimicrobial-Resistant and Biofilm-Forming Pathogens on Biotic and Abiotic Surfaces. Antibiotics (Basel) 2024; 13:788. [PMID: 39200087 PMCID: PMC11351874 DOI: 10.3390/antibiotics13080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
The growing threat of antimicrobial-resistant (AMR) pathogens to human health worldwide emphasizes the need for more effective infection control strategies. Bacterial and fungal biofilms pose a major challenge in treating AMR pathogen infections. Biofilms are formed by pathogenic microbes encased in extracellular polymeric substances to confer protection from antimicrobials and the host immune system. Biofilms also promote the growth of antibiotic-resistant mutants and latent persister cells and thus complicate therapeutic approaches. Biofilms are ubiquitous and cause serious health risks due to their ability to colonize various surfaces, including human tissues, medical devices, and food-processing equipment. Detection and characterization of biofilms are crucial for prompt intervention and infection control. To this end, traditional approaches are often effective, yet they fail to identify the microbial species inside biofilms. Recent advances in artificial intelligence (AI) have provided new avenues to improve biofilm identification. Machine-learning algorithms and image-processing techniques have shown promise for the accurate and efficient detection of biofilm-forming microorganisms on biotic and abiotic surfaces. These advancements have the potential to transform biofilm research and clinical practice by allowing faster diagnosis and more tailored therapy. This comprehensive review focuses on the application of AI techniques for the identification of biofilm-forming pathogens in various industries, including healthcare, food safety, and agriculture. The review discusses the existing approaches, challenges, and potential applications of AI in biofilm research, with a particular focus on the role of AI in improving diagnostic capacities and guiding preventative actions. The synthesis of the current knowledge and future directions, as described in this review, will guide future research and development efforts in combating biofilm-associated infections.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Kromer C, Katz A, Feldmann I, Laux P, Luch A, Tschiche HR. A targeted fluorescent nanosensor for ratiometric pH sensing at the cell surface. Sci Rep 2024; 14:12302. [PMID: 38811698 PMCID: PMC11137054 DOI: 10.1038/s41598-024-62976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The correlation between altered extracellular pH and various pathological conditions, including cancer, inflammation and metabolic disorders, is well known. Bulk pH measurements cannot report the extracellular pH value at the cell surface. However, there is a limited number of suitable tools for measuring the extracellular pH of cells with high spatial resolution, and none of them are commonly used in laboratories around the world. In this study, a versatile ratiometric nanosensor for the measurement of extracellular pH was developed. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with the pH-inert reference dye Nile red and is surface functionalized with a pH-responsive fluorescein dye. Equipped with a targeting moiety, the nanosensor can adhere to cell membranes, allowing direct measurement of extracellular pH at the cell surface. The nanosensor exhibits a sensitive ratiometric pH response within the range of 5.5-9.0, with a calculated pKa of 7.47. This range optimally covers the extracellular pH (pHe) of most healthy cells and cells in which the pHe is abnormal, such as cancer cells. In combination with the nanosensors ability to target cell membranes, its high robustness, reversibility and its biocompatibility, the pHe nanosensor proves to be well suited for in-situ measurement of extracellular pH, even over extended time periods. This pH nanosensor has the potential to advance biomedical research by improving our understanding of cellular microenvironments, where extracellular pH plays an important role.
Collapse
Affiliation(s)
- Charlotte Kromer
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Aaron Katz
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ines Feldmann
- Material-Microbiome Interactions, Department Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R Tschiche
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
6
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
7
|
Cao X, Scoffield J, Xie B, Morton DB, Wu H. Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Front Cell Infect Microbiol 2023; 13:1279380. [PMID: 38192401 PMCID: PMC10773677 DOI: 10.3389/fcimb.2023.1279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Cao
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Jessica Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baotong Xie
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - David B. Morton
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Nicolosi D, Petronio Petronio G, Russo S, Di Naro M, Cutuli MA, Russo C, Di Marco R. Innovative Phospholipid Carriers: A Viable Strategy to Counteract Antimicrobial Resistance. Int J Mol Sci 2023; 24:15934. [PMID: 37958915 PMCID: PMC10648799 DOI: 10.3390/ijms242115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The overuse and misuse of antibiotics have led to the emergence and spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria strains, usually associated with poorer patient outcomes and higher costs. In order to preserve the usefulness of these life-saving drugs, it is crucial to use them appropriately, as also recommended by the WHO. Moreover, innovative, safe, and more effective approaches are being investigated, aiming to revise drug treatments to improve their pharmacokinetics and distribution and to reduce the onset of drug resistance. Globally, to reduce the burden of antimicrobial resistance (AMR), guidelines and indications have been developed over time, aimed at narrowing the use and diminishing the environmental spread of these life-saving molecules by optimizing prescriptions, dosage, and times of use, as well as investing resources into obtaining innovative formulations with better pharmacokinetics, pharmacodynamics, and therapeutic results. This has led to the development of new nano-formulations as drug delivery vehicles, characterized by unique structural properties, biocompatible natures, and targeted activities such as state-of-the-art phospholipid particles generally grouped as liposomes, virosomes, and functionalized exosomes, which represent an attractive and innovative delivery approach. Liposomes and virosomes are chemically synthesized carriers that utilize phospholipids whose nature is predetermined based on their use, with a long track record as drug delivery systems. Exosomes are vesicles naturally released by cells, which utilize the lipids present in their cellular membranes only, and therefore, are highly biocompatible, with investigations as a delivery system having a more recent origin. This review will summarize the state of the art on microvesicle research, liposomes, virosomes, and exosomes, as useful and effective tools to tackle the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Stefano Russo
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University (HBIGS), 68167 Mannheim, Germany
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Marco Alfio Cutuli
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
- Consorzio Interuniversitario in Ingegneria e Medicina (COIIM), Azienda Sanitaria Regionale del Molise ASReM, UOC Governance del Farmaco, 86100 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| |
Collapse
|
9
|
Kromer C, Schwibbert K, Radunz S, Thiele D, Laux P, Luch A, Tschiche HR. ROS generating BODIPY loaded nanoparticles for photodynamic eradication of biofilms. Front Microbiol 2023; 14:1274715. [PMID: 37908542 PMCID: PMC10615615 DOI: 10.3389/fmicb.2023.1274715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial biofilms can pose a serious health risk to humans and are less susceptible to antibiotics and disinfection than planktonic bacteria. Here, a novel method for biofilm eradication based on antimicrobial photodynamic therapy utilizing a nanoparticle in conjunction with a BODIPY derivative as photosensitizer was developed. Reactive oxygen species are generated upon illumination with visible light and lead to a strong, controllable and persistent eradication of both planktonic bacteria and biofilms. One of the biggest challenges in biofilm eradication is the penetration of the antimicrobial agent into the biofilm and its matrix. A biocompatible hydrophilic nanoparticle was utilized as a delivery system for the hydrophobic BODIPY dye and enabled its accumulation within the biofilm. This key feature of delivering the antimicrobial agent to the site of action where it is activated resulted in effective eradication of all tested biofilms. Here, 3 bacterial species that commonly form clinically relevant pathogenic biofilms were selected: Escherichia coli, Staphylococcus aureus and Streptococcus mutans. The development of this antimicrobial photodynamic therapy tool for biofilm eradication takes a promising step towards new methods for the much needed treatment of pathogenic biofilms.
Collapse
Affiliation(s)
- Charlotte Kromer
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Karin Schwibbert
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | | | - Dorothea Thiele
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andreas Luch
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R. Tschiche
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
10
|
Knisz J, Eckert R, Gieg LM, Koerdt A, Lee JS, Silva ER, Skovhus TL, An Stepec BA, Wade SA. Microbiologically influenced corrosion-more than just microorganisms. FEMS Microbiol Rev 2023; 47:fuad041. [PMID: 37437902 PMCID: PMC10479746 DOI: 10.1093/femsre/fuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023] Open
Abstract
Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern that affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines are limited. A truly interdisciplinary approach, which would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review, we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods, and approaches to help solve MIC-related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field.
Collapse
Affiliation(s)
- J Knisz
- Department of Water Supply and Sewerage, Faculty of Water Sciences, University of Public Service, 6500, Baja, Hungary
| | - R Eckert
- Microbial Corrosion Consulting, LLC, Commerce Township, 48382, MI, USA
| | - L M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - A Koerdt
- Federal Institute for Materials Research and Testing (BAM), 12205, Berlin, Germany
| | - J S Lee
- Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, 39529, MS, USA
| | - E R Silva
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
- CERENA - Centre for Natural Resources and the Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - T L Skovhus
- Research Center for Built Environment, Energy, Water and Climate, VIA, University College, 8700, Horsens, Denmark
| | - B A An Stepec
- Department of Energy and Technology, NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway
| | - S A Wade
- Bioengineering Research Group, Swinburne University of Technology, 3122, Melbourne, Australia
| |
Collapse
|
11
|
Scholtz L, Tavernaro I, Eckert JG, Lutowski M, Geißler D, Hertwig A, Hidde G, Bigall NC, Resch-Genger U. Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads. Sci Rep 2023; 13:11957. [PMID: 37488159 PMCID: PMC10366211 DOI: 10.1038/s41598-023-38518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 µm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials.
Collapse
Affiliation(s)
- Lena Scholtz
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Isabella Tavernaro
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - J Gerrit Eckert
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Marc Lutowski
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Daniel Geißler
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- PolyAn GmbH, Schkopauer Ring 6, 12681, Berlin, Germany
| | - Andreas Hertwig
- Division 6.1 Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Gundula Hidde
- Division 6.1 Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
| | - Ute Resch-Genger
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
12
|
Würth C, Behnke T, Gienger J, Resch-Genger U. Efficiency scale for scattering luminescent particles linked to fundamental and measurable spectroscopic properties. Sci Rep 2023; 13:6254. [PMID: 37069220 PMCID: PMC10110600 DOI: 10.1038/s41598-023-32933-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Comparing the performance of molecular and nanoscale luminophores and luminescent micro- and nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 µm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes.
Collapse
Affiliation(s)
- Christian Würth
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstaetter Str. 11, 12489, Berlin, Germany.
| | - Thomas Behnke
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstaetter Str. 11, 12489, Berlin, Germany
| | - Jonas Gienger
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstaetter Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
13
|
Srivastava P, Tavernaro I, Scholtz L, Genger C, Welker P, Schreiber F, Meyer K, Resch-Genger U. Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies. Sci Rep 2023; 13:1321. [PMID: 36693888 PMCID: PMC9873940 DOI: 10.1038/s41598-023-28203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Ratiometric green-red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fluorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank Schreiber
- Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Klas Meyer
- Division Process Analytical Technology, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
14
|
Short WD, Olutoye OO, Padon BW, Parikh UM, Colchado D, Vangapandu H, Shams S, Chi T, Jung JP, Balaji S. Advances in non-invasive biosensing measures to monitor wound healing progression. Front Bioeng Biotechnol 2022; 10:952198. [PMID: 36213059 PMCID: PMC9539744 DOI: 10.3389/fbioe.2022.952198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed.
Collapse
Affiliation(s)
- Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Benjamin W. Padon
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Umang M. Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Daniel Colchado
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Hima Vangapandu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Shayan Shams
- Department of Applied Data Science, San Jose State University, San Jose, CA, United States
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Taiyun Chi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Swathi Balaji,
| |
Collapse
|