1
|
Noguchi M, Koide Y, Shindo Y, Aoyama T, Hashimoto S, Tachibana H, Kodaira T, Ishihara S, Naganawa S. Repeat stereotactic radiosurgery for recurrent brain metastases: a retrospective comparison of local progression and distant brain metastases after prior radiosurgery. J Neurooncol 2025:10.1007/s11060-025-05035-8. [PMID: 40202569 DOI: 10.1007/s11060-025-05035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
AIM This study evaluated the efficacy and safety of repeat stereotactic radiosurgery (SRS) for recurrent brain metastases (BMs), focusing on failure patterns of local progression (LP) and distant brain metastases (DBM). METHODS Patients who underwent first-time SRS for newly diagnosed BMs (2011-2022) and repeat SRS (until June 2024) were included. Treatment courses were first-time or repeat SRS, with repeat SRS classified as LP and DBM. The primary endpoint was the 1-year local control rate (LCR). Secondary endpoints included survival and radiation necrosis (RN) incidence. RESULTS Among 723 courses (427 patients, 4,524 BMs), 404 (141 patients, 2,924 BMs) met criteria. First-time SRS was performed in 141 courses (775 BMs), and repeat SRS in 263 (2,149 BMs), including 45 LP (38 patients, 224 BMs) and 218 DBM (126 patients, 1,925 BMs). The median age was 65 years, and 75.9% had lung cancer. LP had a longer interval from prior SRS (12.6 vs. 6.3 months, P < 0.001) but similar follow-up (12.4 vs. 13.7 months). The 1-year LCR was lower in LP (72.4% vs. 88.3%, P = 0.0022), though survival was similar (17.9 vs. 16.3 months). LP had higher RN incidence (20.6% vs. 5.7%, P < 0.001) and symptomatic RN (13.3% vs. 2.8%, P < 0.001). Multivariate analysis identified LP failure as a significant factor for increased local failure (subdistribution hazard ratio [SHR] 2.35, P = 0.039) and RN (SHR 3.41, P < 0.001). CONCLUSIONS Despite similar survival, LP failure was associated with lower LCR and higher RN incidence, highlighting the need for optimized repeat SRS strategies.
Collapse
Affiliation(s)
- Masamune Noguchi
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaro Koide
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, Japan.
| | - Yurika Shindo
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, Japan
| | - Shingo Hashimoto
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hiroyuki Tachibana
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, Japan
| | - Shunichi Ishihara
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Lee WJ, Chong K, Choi JW, Kong DS, Seol HJ, Nam DH, Lee JI. Limitations of outcome prediction based on interfractional volume changes of large (≥ 10cm 3) brain metastases during fractionated gamma knife radiosurgery. Acta Neurochir (Wien) 2024; 166:437. [PMID: 39495426 DOI: 10.1007/s00701-024-06331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE This study investigated the interfractional volume changes of large (≥ 10 cm3) brain metastases (BMs) during fractionated gamma knife radiosurgery (FGKRS) to assess its predictive value for tumor control outcomes. METHODS The patients who underwent FGKRS for large BMs between January 2017 and December 2022 in our center were reviewed. The interfractional volume change was defined as the disparity in tumor volume (TV) measured between the magnetic resonance images acquired on the first treatment day and those obtained after 2 or 3 fractions during the course of FGKRS. RESULTS A total of 73 lesions in 70 patients with various primary pathologies were included. Over a median follow-up period of 11 months (range 1-77), the tumor control rate was 63%. Initial TV (cm3) was associated with progression free survival (PFS) and overall survival (OS) in both univariate and multivariate analyses (p = 0.01). Interfractional TV changes revealed an increase in 13 (17.8%) lesions, no change in 14 (19.2%) lesions, and a decrease in 46 (63.0%) lesions, with a mean volume reduction of 5% ± 0.12. Three cut-offs (5%, 10% and 15% volume decrement) were established and patients were divided into two groups based on each reference point. However, there were no significant differences in PFS and OS between the two groups, irrespective of the chosen cut-off value used. CONCLUSION Interfractional volume changes of large BMs were not found to be associated with tumor control outcomes. Neither significant interfractional volume reduction nor significant volume increase necessarily predicts the tumor control, making early close monitoring essential after FGKRS.
Collapse
Affiliation(s)
- Won-Jae Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyuha Chong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung-Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Weller M, Remon J, Rieken S, Vollmuth P, Ahn MJ, Minniti G, Le Rhun E, Westphal M, Brastianos PK, Soo RA, Kirkpatrick JP, Goldberg SB, Öhrling K, Hegi-Johnson F, Hendriks LEL. Central nervous system metastases in advanced non-small cell lung cancer: A review of the therapeutic landscape. Cancer Treat Rev 2024; 130:102807. [PMID: 39151281 DOI: 10.1016/j.ctrv.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Up to 40% of patients with non-small cell lung cancer (NSCLC) develop central nervous system (CNS) metastases. Current treatments for this subgroup of patients with advanced NSCLC include local therapies (surgery, stereotactic radiosurgery, and, less frequently, whole-brain radiotherapy), targeted therapies for oncogene-addicted NSCLC (small molecules, such as tyrosine kinase inhibitors, and antibody-drug conjugates), and immune checkpoint inhibitors (as monotherapy or combination therapy), with multiple new drugs in development. However, confirming the intracranial activity of these treatments has proven to be challenging, given that most lung cancer clinical trials exclude patients with untreated and/or progressing CNS metastases, or do not include prespecified CNS-related endpoints. Here we review progress in the treatment of patients with CNS metastases originating from NSCLC, examining local treatment options, systemic therapies, and multimodal therapeutic strategies. We also consider challenges regarding assessment of treatment response and provide thoughts around future directions for managing CNS disease in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Jordi Remon
- Paris-Saclay University, Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital Göttingen (UMG), Göttingen, Germany; Comprehensive Cancer Center Lower Saxony (CCC-N), University Hospital Göttingen (UMG), Göttingen, Germany.
| | - Philipp Vollmuth
- Division for Computational Radiology & Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Emilie Le Rhun
- Departments of Neurosurgery and Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Manfred Westphal
- Department of Neurosurgery and Institute for Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Ross A Soo
- Department of Hematology-Oncology, National University Hospital, Singapore, Singapore.
| | - John P Kirkpatrick
- Departments of Radiation Oncology and Neurosurgery, Duke University, Durham, NC, USA.
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA.
| | | | - Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia; Sir Peter MacCallum Department of Clinical Oncology, University of Melbourne, Melbourne, Australia.
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, Netherlands.
| |
Collapse
|
4
|
Nicosia L, Allegra AG, Giaj-Levra N, Bayani R, Darzikolaee NM, Mazzola R, Pastorello E, Ravelli P, Ricchetti F, Rigo M, Ruggieri R, Gurrera D, Borgese RF, Gaito S, Minniti G, Navarria P, Scorsetti M, Alongi F. Repeated HyperArc radiosurgery for recurrent intracranial metastases and dosimetric analysis of recurrence pattern to account for diffuse dose effect on microscopical disease. Clin Transl Radiat Oncol 2024; 48:100811. [PMID: 39036468 PMCID: PMC11260387 DOI: 10.1016/j.ctro.2024.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024] Open
Abstract
Aims Evaluate effectiveness and safety of multiple HyperArc courses and patterns of progression in patients affected by BMs with intracranial progression. Methods 56 patients were treated for 702 BMs with 197 (range 2-8) HyperArc courses in case of exclusive intracranial progression. Primary end-point was the overall survival (OS), secondary end-points were intracranial progression-free survival (iPFS), toxicity, local control (LC), neurological death (ND), and whole-brain RT (WBRT)-free survival. Site of progression was evaluated against isodoses levels (0, 1, 2, 3, 5, 7, 8, 10, 13, 15, 20, and 24 Gy.). Results The 1-year OS was 70 %, and the median was 20.8 months (17-36). At the univariate analysis (UVA) biological equivalent dose (BED) > 51.3 Gy and non-melanoma histology significantly correlated with OS. The median time to iPFS was 4.9 months, and the 1-year iPFS was 15 %. Globally, 538 new BMs occurred after the first HA cycle in patients with extracranial disease controlled. 96.4 % of them occurred within the isodoses range 0-7 Gy as follows: 26.6 % (0 Gy), 16.5 % (1 Gy), 16.5 % (2 Gy), 20.1 % (3 Gy), 13.1 % (5 Gy), 3.4 % (7 Gy) (p = 0.00). Radionecrosis occurred in 2 metastases (0.28 %). No clinical toxicity of grade 3 or higher occurred during follow-up. One- and 2-year LC was 90 % and 79 %, respectively. At the UVA BED > 70 Gy and non-melanoma histology were significant predictors of higher LC. The 2-year WBRT-free survival was 70 %. After a median follow-up of 17.4 months, 12 patients deceased by ND. Conclusion Intracranical relapses can be safely and effectively treated with repeated HyperArc, with the aim to postpone or avoid WBRT. Diffuse dose by volumetric RT might reduce microscopic disease also at relatively low levels, potentially acting as a virtual CTV. Neurological death is not the most common cause of death in this population, which highlights the impact of extracranial disease on overall survival.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Andrea Gaetano Allegra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Reyhaneh Bayani
- Radiation Oncology Department, Hamadan University of Medical Sciences, Hamadan, Iran
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Mousavi Darzikolaee
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Edoardo Pastorello
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Paolo Ravelli
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Ruggero Ruggieri
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Davide Gurrera
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Riccardo Filippo Borgese
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
| | - Simona Gaito
- Division of Clinical Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Pierina Navarria
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano 20089, Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano 20089, Milan, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, 37024 Negrar, Italy
- University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Ohira S, Suzuki Y, Washio H, Yamamoto Y, Tateishi S, Inui S, Kanayama N, Kawamata M, Miyazaki M, Nishio T, Koizumi M, Nakanishi K, Konishi K. Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases. Strahlenther Onkol 2024; 200:39-48. [PMID: 37591978 DOI: 10.1007/s00066-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuta Suzuki
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soichiro Tateishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Minoru Kawamata
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
7
|
Hsu DG, Ballangrud Å, Prezelski K, Swinburne NC, Young R, Beal K, Deasy JO, Cerviño L, Aristophanous M. Automatically tracking brain metastases after stereotactic radiosurgery. Phys Imaging Radiat Oncol 2023; 27:100452. [PMID: 37720463 PMCID: PMC10500025 DOI: 10.1016/j.phro.2023.100452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 09/19/2023] Open
Abstract
Background and purpose Patients with brain metastases (BMs) are surviving longer and returning for multiple courses of stereotactic radiosurgery. BMs are monitored after radiation with follow-up magnetic resonance (MR) imaging every 2-3 months. This study investigated whether it is possible to automatically track BMs on longitudinal imaging and quantify the tumor response after radiotherapy. Methods The METRO process (MEtastasis Tracking with Repeated Observations was developed to automatically process patient data and track BMs. A longitudinal intrapatient registration method for T1 MR post-Gd was conceived and validated on 20 patients. Detections and volumetric measurements of BMs were obtained from a deep learning model. BM tracking was validated on 32 separate patients by comparing results with manual measurements of BM response and radiologists' assessments of new BMs. Linear regression and residual analysis were used to assess accuracy in determining tumor response and size change. Results A total of 123 irradiated BMs and 38 new BMs were successfully tracked. 66 irradiated BMs were visible on follow-up imaging 3-9 months after radiotherapy. Comparing their longest diameter changes measured manually vs. METRO, the Pearson correlation coefficient was 0.88 (p < 0.001); the mean residual error was -8 ± 17%. The mean registration error was 1.5 ± 0.2 mm. Conclusions Automatic, longitudinal tracking of BMs using deep learning methods is feasible. In particular, the software system METRO fulfills a need to automatically track and quantify volumetric changes of BMs prior to, and in response to, radiation therapy.
Collapse
Affiliation(s)
- Dylan G. Hsu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Åse Ballangrud
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Kayla Prezelski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Nathaniel C. Swinburne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Robert Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Kathryn Beal
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Laura Cerviño
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Michalis Aristophanous
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
8
|
Chen MM, Terzic A, Becker AS, Johnson JM, Wu CC, Wintermark M, Wald C, Wu J. Artificial intelligence in oncologic imaging. Eur J Radiol Open 2022; 9:100441. [PMID: 36193451 PMCID: PMC9525817 DOI: 10.1016/j.ejro.2022.100441] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Radiology is integral to cancer care. Compared to molecular assays, imaging has its advantages. Imaging as a noninvasive tool can assess the entirety of tumor unbiased by sampling error and is routinely acquired at multiple time points in oncological practice. Imaging data can be digitally post-processed for quantitative assessment. The ever-increasing application of Artificial intelligence (AI) to clinical imaging is challenging radiology to become a discipline with competence in data science, which plays an important role in modern oncology. Beyond streamlining certain clinical tasks, the power of AI lies in its ability to reveal previously undetected or even imperceptible radiographic patterns that may be difficult to ascertain by the human sensory system. Here, we provide a narrative review of the emerging AI applications relevant to the oncological imaging spectrum and elaborate on emerging paradigms and opportunities. We envision that these technical advances will change radiology in the coming years, leading to the optimization of imaging acquisition and discovery of clinically relevant biomarkers for cancer diagnosis, staging, and treatment monitoring. Together, they pave the road for future clinical translation in precision oncology.
Collapse
Affiliation(s)
- Melissa M. Chen
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Admir Terzic
- Department of Radiology, Dom Zdravlja Odzak, Odzak, Bosnia and Herzegovina
| | - Anton S. Becker
- Department Radiology, Memorial Sloan Kettering, New York, NY, USA
| | - Jason M. Johnson
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C. Wu
- Department of Thoracic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|