1
|
Nazir A, Puthuveettil AR, Hussain FHN, Hamed KE, Munawar N. Endophytic fungi: nature's solution for antimicrobial resistance and sustainable agriculture. Front Microbiol 2024; 15:1461504. [PMID: 39726956 PMCID: PMC11669676 DOI: 10.3389/fmicb.2024.1461504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes. The present study investigates the potential of endophytic fungi as a source of novel bioactive chemicals with antibacterial capabilities. These fungi synthesize secondary metabolites such as polyketides and peptides via polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways. Notable substances, like prenylated indole alkaloids and fumaric acid, have shown promising antibacterial and antifungal properties against multidrug-resistant infectious agents. This review also emphasizes the symbiotic link between endophytes and their host plants, which is critical for secondary metabolite production. The study focuses on the significance of isolation methods for endophytes and proposes their use in for sustainable agriculture, bioremediation, and medicine. Future research combining endophytic biodiversity analysis with next-generation sequencing (NGS) and nanotechnology could provide novel techniques for combating AMR and contributing to sustainability across multiple industries.
Collapse
Affiliation(s)
- Asiya Nazir
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Abdul R. Puthuveettil
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | - Khalid E. Hamed
- Department of Plant Protection, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Nayla Munawar
- College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Sokołowski W, Marek-Kozaczuk M, Sosnowski P, Sajnaga E, Jach ME, Karaś MA. Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Pseudomonas chlororaphis Isolated from Chamaecytisus albus (Hack.) Rothm. Molecules 2024; 29:4370. [PMID: 39339366 PMCID: PMC11433735 DOI: 10.3390/molecules29184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Fungal phytopathogens represent a large and economically significant challenge to food production worldwide. Thus, the application of biocontrol agents can be an alternative. In the present study, we carried out biological, metabolomic, and genetic analyses of three endophytic isolates from nodules of Chamaecytisus albus, classified as Pseudomonas chlororaphis acting as antifungal agents. The efficiency of production of their diffusible and volatile antifungal compounds (VOCs) was verified in antagonistic assays with the use of soil-borne phytopathogens: B. cinerea, F. oxysporum, and S. sclerotiorum. Diffusible metabolites were identified using chromatographic and spectrometric analyses (HPTLC, GC-MS, and LC-MS/MS). The phzF, phzO, and prnC genes in the genomes of bacterial strains were confirmed by PCR. In turn, the plant growth promotion (PGP) properties (production of HCN, auxins, siderophores, and hydrolytic enzymes, phosphate solubilization) of pseudomonads were bioassayed. The data analysis showed that all tested strains have broad-range antifungal activity with varying degrees of antagonism. The most abundant bioactive compounds were phenazine derivatives: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, and diketopiperazine derivatives as well as ortho-dialkyl-aromatic acids, pyrrolnitrin, siderophores, and HCN. The results indicate that the tested P. chlororaphis isolates exhibit characteristics of biocontrol organisms; therefore, they have potential to be used in sustainable agriculture and as commercial postharvest fungicides to be used in fruits and vegetables.
Collapse
Affiliation(s)
- Wojciech Sokołowski
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b Str., 20-059 Lublin, Poland
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J Str., 20-708 Lublin, Poland
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1I Str., 20-708 Lublin, Poland
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| |
Collapse
|
3
|
Shi B, Yuan H, Wang Z, Fan Y, Qin G, Xiaoqian L, Wang L, Tu H, Hou H. Biocontrol activity and potential mechanism of volatile organic compounds from Aspergillus niger strain La2 against pear Valsa canker. PEST MANAGEMENT SCIENCE 2024; 80:3010-3021. [PMID: 38318950 DOI: 10.1002/ps.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhuoni Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yangyang Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Genhong Qin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Xiaoqian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Etminani F, Harighi B, Bahramnejad B, Mozafari AA. Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BMC PLANT BIOLOGY 2024; 24:104. [PMID: 38336608 PMCID: PMC11297725 DOI: 10.1186/s12870-024-04779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.
Collapse
Affiliation(s)
- Faegheh Etminani
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Bahman Bahramnejad
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
6
|
Raio A. Diverse roles played by "Pseudomonas fluorescens complex" volatile compounds in their interaction with phytopathogenic microrganims, pests and plants. World J Microbiol Biotechnol 2024; 40:80. [PMID: 38281212 PMCID: PMC10822798 DOI: 10.1007/s11274-023-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Pseudomonas fluorescens complex consists of environmental and some human opportunistic pathogenic bacteria. It includes mainly beneficial and few phytopathogenic species that are common inhabitants of soil and plant rhizosphere. Many members of the group are in fact known as effective biocontrol agents of plant pathogens and as plant growth promoters and for these attitudes they are of great interest for biotechnological applications. The antagonistic activity of fluorescent Pseudomonas is mainly related to the production of several antibiotic compounds, lytic enzymes, lipopeptides and siderophores. Several volatile organic compounds are also synthesized by fluorescent Pseudomonas including different kinds of molecules that are involved in antagonistic interactions with other organisms and in the induction of systemic responses in plants. This review will mainly focus on the volatile compounds emitted by some members of P. fluorescens complex so far identified, with the aim to highlight the role played by these molecules in the interaction of the bacteria with phytopathogenic micro and macro-organisms and plants.
Collapse
Affiliation(s)
- Aida Raio
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano, 10., 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
7
|
Duan Y, Han M, Grimm M, Schierstaedt J, Imani J, Cardinale M, Le Jean M, Nesme J, Sørensen SJ, Schikora A. Hordeum vulgare differentiates its response to beneficial bacteria. BMC PLANT BIOLOGY 2023; 23:460. [PMID: 37789272 PMCID: PMC10548682 DOI: 10.1186/s12870-023-04484-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored. RESULTS This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable. CONCLUSIONS Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture.
Collapse
Affiliation(s)
- Yongming Duan
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
| | - Min Han
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
| | - Maja Grimm
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
| | - Jasper Schierstaedt
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) - Department Plant-Microbe Systems, Theodor-Echtermeyer Weg 1, 14979, Großbeeren, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP6 Lecce- Monteroni, Lecce, 73100, Italy
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Marie Le Jean
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS, Université de Lorraine, 8 rue du Général Delestraint, Metz, 57070, France
| | - Joseph Nesme
- Department of Biology, Section of Microbiology, Copenhagen University, Universitetsparken 15, Copenhagen, 2100, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, Copenhagen University, Universitetsparken 15, Copenhagen, 2100, Denmark
| | - Adam Schikora
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany.
| |
Collapse
|
8
|
Yasmin H, Shah ZA, Mumtaz S, Ilyas N, Rashid U, Alsahli AA, Chung YS. Alleviation of banded leaf and sheath blight disease incidence in maize by bacterial volatile organic compounds and molecular docking of targeted inhibitors in Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2023; 14:1218615. [PMID: 37868311 PMCID: PMC10588623 DOI: 10.3389/fpls.2023.1218615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/21/2023] [Indexed: 10/24/2023]
Abstract
Rhizoctonia solani (RS) is a pathogenic fungus that affects maize (Zea mays L.) plants and causes banded leaf and sheath blight (BLSB) with severe consequences leading to significant economic losses. Contrarily, rhizobacteria produce numerous volatile organic compounds (VOCs) that help in devising the environment-friendly mechanism for promoting plant growth and stress alleviation without having physical contact with plants. In the present study, 15 rhizobacterial strains were tested for their antagonism against RS. The antagonistic potential of VOCs of the tested plant growth-promoting rhizobacteria (PGPR) strains ranged from 50% to 80% as compared to the control (without PGPR). Among these 15 strains, the maximum (80%) antagonistic activity was exhibited by Pseudomonas pseudoalcaligenes SRM-16. Thus, the potential of VOCs produced by P. pseudoalcaligenes SRM-16 to alleviate the BLSB disease in maize was evaluated. A pot experiment was conducted under greenhouse conditions to observe the effect of VOCs on disease resistance of BLSB-infected seedlings. Overall, maize seedlings exposed to VOCs showed a significant increase in disease resistance as indicated by a reduced disease score than that of unexposed infected plants. The VOCs-exposed maize exhibited lower (11.6%) disease incidence compared to the non-inoculated maize (14.1%). Moreover, plants exposed to VOCs displayed visible improvements in biomass, photosynthetic pigments, osmoregulation, and plant antioxidant and defense enzyme activities compared to the healthy but unexposed seedlings. Simultaneous application of RS and VOCs enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities by 96.7%, 266.6%, 313.7%, 246.6%, 307%, and 149.7%, respectively, in the roots and by 81.6%, 246.4%, 269.5%, 269.6%, 329%, and 137.6%, respectively, in the shoots, relative to those of the control plants. The binding affinity of the VOCs (2-pentylfuran, 2,3-butanediol, and dimethyl disulfide) with CRZ1 and S9 protein receptors of RS was assessed by deploying in silico methods. Overall, 2-pentylfuran exhibited a binding affinity with both the selected receptors of RS, while 2,3-butanediol and dimethyl disulfide were able to bind S9 protein only. Hence, it can be deduced that S9 protein receptors are more likely the target RS receptors of bacterial VOCs to inhibit the proliferation of RS.
Collapse
Affiliation(s)
- Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Zafar Abbas Shah
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Urooj Rashid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
9
|
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles. FRONTIERS IN PLANT SCIENCE 2023; 14:1193573. [PMID: 37492778 PMCID: PMC10364642 DOI: 10.3389/fpls.2023.1193573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.
Collapse
Affiliation(s)
- Nisha Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Pigdamber Road, Rau, Indore, Madhya Pradesh, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Virendra Kumar Yadav
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Rakesh Kumar Verma
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mahima Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biotechnology, Noida International University, Noida, U.P., India
| | - Rajendra Singh Chundawat
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Medison RG, Tan L, Medison MB, Chiwina KE. Use of beneficial bacterial endophytes: A practical strategy to achieve sustainable agriculture. AIMS Microbiol 2022; 8:624-643. [PMID: 36694581 PMCID: PMC9834078 DOI: 10.3934/microbiol.2022040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Beneficial endophytic bacteria influence their host plant to grow and resist pathogens. Despite the advantages of endophytic bacteria to their host, their application in agriculture has been low. Furthermore, many plant growers improperly use synthetic chemicals due to having no or little knowledge of the role of endophytic bacteria in plant growth, the prevention and control of pathogens and poor access to endobacterial bioproducts. These synthetic chemicals have caused soil infertility, environmental contamination, disruption to ecological cycles and the emergence of resistant pests and pathogens. There is more that needs to be done to explore alternative ways of achieving sustainable plant production while maintaining environmental health. In recent years, the use of beneficial endophytic bacteria has been noted to be a promising tool in promoting plant growth and the biocontrol of pathogens. Therefore, this review discusses the roles of endophytic bacteria in plant growth and the biocontrol of plant pathogens. Several mechanisms that endophytic bacteria use to alleviate plant biotic and abiotic stresses by helping their host plants acquire nutrients, enhance plant growth and development and suppress pathogens are explained. The review also indicates that there is a gap between research and general field applications of endophytic bacteria and suggests a need for collaborative efforts between growers at all levels. Furthermore, the presence of scientific and regulatory frameworks that promote advanced biotechnological tools and bioinoculants represents major opportunities in the applications of endophytic bacteria. The review provides a basis for future research in areas related to understanding the interactions between plants and beneficial endophytic microorganisms, especially bacteria.
Collapse
Affiliation(s)
| | - Litao Tan
- College of Agriculture, Yangtze University, Jingzhou Hubei 434025, China
| | | | | |
Collapse
|