1
|
Jiang L, Peng Y, Kim KH, Jeon D, Choe H, Han AR, Kim CY, Lee J. Jeongeuplla avenae gen. nov., sp. nov., a novel β-carotene-producing bacterium that alleviates salinity stress in Arabidopsis. Front Microbiol 2023; 14:1265308. [PMID: 38125566 PMCID: PMC10731981 DOI: 10.3389/fmicb.2023.1265308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
A novel endophytic bacterium, designated DY-R2A-6T, was isolated from oat (Avena sativa L.) seeds and found to produces β-carotene. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DY-R2A-6T had 96.3% similarity with Jiella aquimaris LZB041T, 96.0% similarity with Aurantimonas aggregate R14M6T and Aureimonas frigidaquae JCM 14755T, and less than 95.8% similarity with other genera in the family Aurantimonadaceae. The complete genome of strain DY-R2A-6T comprised 5,929,370 base pairs, consisting of one full chromosome (5,909,198 bp) and one plasmid (20,172 bp), with a G + C content was 69.1%. The overall genome-related index (OGRI), including digital DNA-DNA hybridization (<20.5%), ANI (<79.2%), and AAI (<64.2%) values, all fell below the thresholds set for novel genera. The major cellular fatty acids (>10%) of strain DY-R2A-6T were C16:0, C19:0 cyclo ω8c, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Ubiquinone-10 was the main respiratory quinone. We identified the gene cluster responsible for carotenoid biosynthesis in the genome and found that the pink-pigment produced by strain DY-R2A-6T is β-carotene. In experiment with Arabidopsis seedlings, co-cultivation with strain DY-R2A-6T led to a 1.4-fold increase in plant biomass and chlorophyll content under salt stress conditions, demonstrating its capacity to enhance salt stress tolerance in plants. Moreover, external application of β-carotene to Arabidopsis seedlings under salt stress conditions also mitigated the stress significantly. Based on these findings, strain DY-R2A-6T is proposed to represent a novel genus and species in the family Aurantimonadaceae, named Jeongeuplla avenae gen. nov., sp. nov. The type strain is DY-R2A-6T (= KCTC 82985T = GDMCC 1.3014T). This study not only identified a new taxon but also utilized genome analysis to predict and confirm the production of β-carotene by strain DY-R2A-6T. It also demonstrated the ability of this strain to enhance salt stress tolerance in plants, suggesting potential application in agriculture to mitigate environmental stress in crops.
Collapse
Affiliation(s)
- Lingmin Jiang
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Yuxin Peng
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ki-Hyun Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Doeun Jeon
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Hanna Choe
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Jiang L, Choe H, Peng Y, Jeon D, Cho D, Jiang Y, Lee JH, Kim CY, Lee J. Sphingomonas abietis sp. nov., an Endophytic Bacterium Isolated from Korean Fir. J Microbiol Biotechnol 2023; 33:1292-1298. [PMID: 37528562 PMCID: PMC10619552 DOI: 10.4014/jmb.2303.03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20°C, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Present address: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Hanna Choe
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Doeun Jeon
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Donghyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yue Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Department of Biosystem and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Department of Biosystem and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Yamada R, Han SR, Park H, Oh TJ. Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. Microorganisms 2023; 11:1480. [PMID: 37374983 DOI: 10.3390/microorganisms11061480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes.
Collapse
Affiliation(s)
- Ryoichi Yamada
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|