1
|
Kolluru V, John R, Saraf S, Chen J, Hankerson B, Robinson S, Kussainova M, Jain K. Gridded livestock density database and spatial trends for Kazakhstan. Sci Data 2023; 10:839. [PMID: 38030700 PMCID: PMC10687097 DOI: 10.1038/s41597-023-02736-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Livestock rearing is a major source of livelihood for food and income in dryland Asia. Increasing livestock density (LSKD) affects ecosystem structure and function, amplifies the effects of climate change, and facilitates disease transmission. Significant knowledge and data gaps regarding their density, spatial distribution, and changes over time exist but have not been explored beyond the county level. This is especially true regarding the unavailability of high-resolution gridded livestock data. Hence, we developed a gridded LSKD database of horses and small ruminants (i.e., sheep & goats) at high-resolution (1 km) for Kazakhstan (KZ) from 2000-2019 using vegetation proxies, climatic, socioeconomic, topographic, and proximity forcing variables through a random forest (RF) regression modeling. We found high-density livestock hotspots in the south-central and southeastern regions, whereas medium-density clusters in the northern and northwestern regions of KZ. Interestingly, population density, proximity to settlements, nighttime lights, and temperature contributed to the efficient downscaling of district-level censuses to gridded estimates. This database will benefit stakeholders, the research community, land managers, and policymakers at regional and national levels.
Collapse
Affiliation(s)
- Venkatesh Kolluru
- Department of Sustainability and Environment, University of South Dakota, Vermillion, SD, 57069, USA.
| | - Ranjeet John
- Department of Sustainability and Environment, University of South Dakota, Vermillion, SD, 57069, USA
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Sakshi Saraf
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Jiquan Chen
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, 48823, USA
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, 48823, USA
| | - Brett Hankerson
- Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Theodor-Lieser-Str. 2, 06120, Halle (Saale), Germany
| | - Sarah Robinson
- Institute for Agricultural Policy and Market Research & Centre for International Development and Environmental Research (ZEU), Justus Liebig University, Giessen, Germany
| | - Maira Kussainova
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, 48823, USA
- Kazakh National Agrarian Research University, AgriTech Hub KazNARU, 8 Abay Avenue, Almaty, 050010, Kazakhstan
- Kazakh-German University (DKU), Nazarbaev avenue, 173, 050010, Almaty, Kazakhstan
| | - Khushboo Jain
- Department of Sustainability and Environment, University of South Dakota, Vermillion, SD, 57069, USA
| |
Collapse
|
2
|
Meisner J, Kato A, Lemerani M, Mwamba Miaka E, Ismail Taban A, Wakefield J, Rowhani-Rahbar A, Pigott DM, Mayer J, Rabinowitz PM. Livestock, pathogens, vectors, and their environment: A causal inference-based approach to estimating the pathway-specific effect of livestock on human African trypanosomiasis risk. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002543. [PMID: 37967087 PMCID: PMC10651035 DOI: 10.1371/journal.pgph.0002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
Livestock are important reservoirs for many zoonotic diseases, however the effects of livestock on human and environmental health extend well beyond direct disease transmission. In this retrospective ecological cohort study we use pre-existing data and the parametric g-formula, which imputes potential outcomes to quantify mediation, to estimate three hypothesized mechanisms by which livestock can influence human African trypanosomiasis (HAT) risk: the reservoir effect, where infected cattle and pigs are a source of infection to humans; the zooprophylactic effect, where preference for livestock hosts exhibited by the tsetse fly vector of HAT means that their presence protects humans from infection; and the environmental change effect, where livestock keeping activities modify the environment in such a way that habitat suitability for tsetse flies, and in turn human infection risk, is reduced. We conducted this study in four high burden countries: at the point level in Uganda, Malawi, and Democratic Republic of Congo (DRC), and at the county level in South Sudan. Our results indicate cattle and pigs play a reservoir role for the rhodesiense form (rHAT) in Uganda (rate ratio (RR) 1.68, 95% CI 0.84, 2.82 for cattle; RR 2.16, 95% CI 1.18, 3.05 for pigs), however zooprophylaxis outweighs this effect for rHAT in Malawi (RR 0.85, 95% CI 0.68, 1.00 for cattle, RR 0.38, 95% CI 0.21, 0.69 for pigs). For the gambiense form (gHAT) we found evidence that pigs may be a competent reservoir (RR 1.15, 95% CI 0.92, 1.72 in Uganda; RR 1.25, 95% CI 1.11, 1.42 in DRC). Statistical significance was reached for rHAT in Malawi (pigs and cattle) and Uganda (pigs only) and for gHAT in DRC (pigs and cattle). We did not find compelling evidence of an environmental change effect (all effect sizes close to 1).
Collapse
Affiliation(s)
- Julianne Meisner
- Center for One Health Research, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | | | - Marshall Lemerani
- Trypanosomiasis Control Program, Ministry of Health, Lilongwe, Malawi
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of Congo
| | | | - Jonathan Wakefield
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Ali Rowhani-Rahbar
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - David M. Pigott
- Department of Health Metrics Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jonathan Mayer
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Peter M. Rabinowitz
- Center for One Health Research, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Meisner J, Kato A, Lemerani MM, Miaka EM, Ismail AT, Wakefield J, Rowhani-Rahbar A, Pigott D, Mayer JD, Lorton C, Rabinowitz PM. Does a One Health approach to human African trypanosomiasis control hasten elimination? A stochastic compartmental modeling approach. Acta Trop 2023; 240:106804. [PMID: 36682395 PMCID: PMC9992224 DOI: 10.1016/j.actatropica.2022.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND . In response to large strides in the control of human African trypanosomiasis (HAT), in the early 2000s the WHO set targets for elimination of both the gambiense (gHAT) and rhodesiense (rHAT) forms as a public health (EPHP) problem by 2020, and elimination of gHAT transmisson (EOT) by 2030. While global EPHP targets have been met, and EOT appears within reach, current control strategies may fail to achieve gHAT EOT in the presence of animal reservoirs, the role of which is currently uncertain. Furthermore, rHAT is not targeted for EOT due to the known importance of animal reservoirs for this form. METHODS . To evaluate the utility of a One Health approach to gHAT and rHAT EOT, we built and parameterized a compartmental stochastic model, using the Institute for Disease Modeling's Compartmental Modeling Software, to six HAT epidemics: the national rHAT epidemics in Uganda and Malawi, the national gHAT epidemics in Uganda and South Sudan, and two separate gHAT epidemics in Democratic Republic of Congo distinguished by dominant vector species. In rHAT foci the reservoir animal sub-model was stratified on four species groups, while in gHAT foci domestic swine were assumed to be the only competent reservoir. The modeled time horizon was 2005-2045, with calibration performed using HAT surveillance data and Optuna. Interventions included insecticide and trypanocide treatment of domestic animal reservoirs at varying coverage levels. RESULTS . Validation against HAT surveillance data indicates favorable performance overall, with the possible exception of DRC. EOT was not observed in any modeled scenarios for rHAT, however insecticide treatment consistently performed better than trypanocide treatment in terms of rHAT control. EOT was not observed for gHAT at 0% coverage of domestic reservoirs with trypanocides or insecticides, but was observed by 2030 in all test scenarios; again, insecticides demonstrated superior performance to trypanocides. CONCLUSIONS EOT likely cannot be achieved for rHAT without control of wildlife reservoirs, however insecticide treatment of domestic animals holds promise for improved control. In the presence of domestic animal reservoirs, gHAT EOT may not be achieved under current control strategies.
Collapse
Affiliation(s)
- Julianne Meisner
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | | | - Marshall M Lemerani
- Trypanosomiasis Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - Erick M Miaka
- Trypanosomiasis Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - Acaga T Ismail
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, DRC
| | - Jonathan Wakefield
- Department of Statistics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - David Pigott
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Jonathan D Mayer
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Geography, University of Washington, Seattle, WA, USA
| | | | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| |
Collapse
|
4
|
Meisner J, Kato A, Lemerani MM, Mwamba Miaka E, Ismail Taban A, Wakefield J, Rowhani-Rahbar A, Pigott DM, Mayer JD, Rabinowitz PM. The effect of livestock density on Trypanosoma brucei gambiense and T. b. rhodesiense: A causal inference-based approach. PLoS Negl Trop Dis 2022; 16:e0010155. [PMID: 36037205 PMCID: PMC9462671 DOI: 10.1371/journal.pntd.0010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/09/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
Domestic and wild animals are important reservoirs of the rhodesiense form of human African trypanosomiasis (rHAT), however quantification of this effect offers utility for deploying non-medical control activities, and anticipating their success when wildlife are excluded. Further, the uncertain role of animal reservoirs-particularly pigs-threatens elimination of transmission (EOT) targets set for the gambiense form (gHAT). Using a new time series of high-resolution cattle and pig density maps, HAT surveillance data collated by the WHO Atlas of HAT, and methods drawn from causal inference and spatial epidemiology, we conducted a retrospective ecological cohort study in Uganda, Malawi, Democratic Republic of the Congo (DRC) and South Sudan to estimate the effect of cattle and pig density on HAT risk. For rHAT, we found a positive effect for cattle (RR 1.61, 95% CI 0.90, 2.99) and pigs (RR 2.07, 95% CI 1.15, 2.75) in Uganda, and a negative effect for cattle (RR 0.88, 95% CI 0.71, 1.10) and pigs (RR 0.42, 95% CI 0.23, 0.67) in Malawi. For gHAT we found a negative effect for cattle in Uganda (RR 0.88, 95% CI 0.50, 1.77) and South Sudan (RR 0.63, 95% CI 0.54, 0.77) but a positive effect in DRC (1.17, 95% CI 1.04, 1.32). For pigs, we found a positive gHAT effect in both Uganda (RR 2.02, 95% CI 0.87, 3.94) and DRC (RR 1.23, 95% CI 1.10, 1.37), and a negative association in South Sudan (RR 0.66, 95% CI 0.50, 0.98). These effects did not reach significance for the cattle-rHAT effect in Uganda or Malawi, or the cattle-gHAT and pig-gHAT effects in Uganda. While ecological bias may drive the findings in South Sudan, estimated E-values and simulation studies suggest unmeasured confounding and underreporting are unlikely to explain our findings in Malawi, Uganda, and DRC. Our results suggest cattle and pigs may be important reservoirs of rHAT in Uganda but not Malawi, and that pigs-and possibly cattle-may be gHAT reservoirs.
Collapse
Affiliation(s)
- Julianne Meisner
- Center for One Health Research, Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | | | | | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of the Congo
| | | | - Jonathan Wakefield
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Ali Rowhani-Rahbar
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - David M. Pigott
- Department of Health Metrics Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Jonathan D. Mayer
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Peter M. Rabinowitz
- Center for One Health Research, Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|