1
|
Wang T, Zhao J, Li QY, Yang HQ, Li M, Duan R, Zhang M, Qi Y, Yu J, Yang XX. Poria cocos-Derived Exosome-like Nanovesicles Alleviate Metabolic Dysfunction-Associated Fatty Liver Disease by Promoting Mitophagy and Inhibiting NLRP3 Inflammasome Activation. Int J Mol Sci 2025; 26:2253. [PMID: 40076875 PMCID: PMC11899877 DOI: 10.3390/ijms26052253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects approximately one-quarter of the world's adult population, and no effective therapeutic drugs are available. Poria cocos is a fungus used as a herb and food nutrient for centuries as well as for MAFLD treatment. Exosome-like nanovesicles have many pharmacological activities; however, studies on the effects of Poria cocos-derived exosome-like nanovesicles (PCELNs) on MAFLD are lacking. Therefore, our study aimed at identifying the effects and mechanism of action of PCELNs on MAFLD. PCELNs were isolated by ultracentrifugation and their morphology was characterized, such as particle size, zeta potential, protein distributions, as well as lipid and miRNA compositions. Then, the absorption and distribution of PCELNs were observed in vivo and in vitro. Finally, L02 cell steatosis model induced by fat emulsion and MAFLD mouse model induced by high-fat diet (HFD) were used to evaluate the effect and mechanism of PCELNs on MAFLD. PCELNs were membrane structured vesicles, with a particle size of 161.4 ± 1.7 nm, a zeta potential of -3.20 ± 0.37 mV, and contained a range of proteins, lipids, and miRNAs. PCELNs were absorbed by L02 cells and targeted the liver and spleen after intraperitoneal injection. PCELNs inhibited body weight gain and improved the index of heart, liver, spleen, and various fats, as well as decreased lipid accumulation and lipid level. They also protected mitochondrial ultrastructure and regulated oxidative stress and energy metabolism disorder. Furthermore, PCELNs increased PTEN induced kinase 1 (PINK1), E3 ubiquitin ligase (Parkin) and microtubule associated protein light chain-3 (LC3) protein expression in the liver, reduced oxidized mitochondrial DNA (Ox-mtDNA) content in mitochondria and cytoplasm of the liver, reduced nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3), pro-cysteinyl aspartate specific proteinase-1 (caspase-1), cleared-caspase-1, and mature-interleukin-1β (IL-1β) protein expression in the liver, and reduced the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and interleukin-18 (IL-18) in serum and liver. In conclusion, we demonstrated that PCELNs may alleviate HFD-induced MAFLD by promoting mitochondrial autophagy and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jun Zhao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Qiu-Yi Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Hui-Qiong Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Min Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Rong Duan
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan Qi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
2
|
Choi J, Choi H, Jang Y, Paik HG, Kwon HS, Kwon J. Fermented Gold Kiwifruit Protects Mice Against Non-Alcoholic Fatty Liver Disease in a High-Fat Diet Model. APPLIED SCIENCES 2024; 14:11503. [DOI: 10.3390/app142411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Gold kiwifruit is known for its high vitamin C content and various benefits. This study investigated the effects and molecular mechanisms of fermented gold kiwifruit (FGK) in a mouse model of high-fat diet (HFD)-induced obesity and hepatic steatosis. FGK powder was prepared using five strains of lactic acid bacteria: L. paracasei, Lc. lactis, L. acidophilus, L. casei, and L. helveticus. ICR mice were fed an HFD for 8 weeks to induce obesity and hepatic steatosis, and FGK supplementation was evaluated for its therapeutic potential. FGK administration significantly reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, triglyceride, and glucose compared to the HFD-only group. Histopathological analysis showed that FGK reduced lipid accumulation and hepatic lesions, as confirmed by hematoxylin and eosin (H&E) staining. Furthermore, administration of FGK activated the sirtuin 1(SIRT1)/adenosine monophosphate-activated protein kinase (AMPK) pathway and inhibited expression of the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in liver tissue. These findings suggest that FGK could reduce the severity of non-alcoholic fatty liver disease (NAFLD) by inhibiting fat synthesis, promoting fat breakdown, and suppressing inflammation in HFD-induced obese mice.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hwal Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Yuseong Jang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hyeon-Gi Paik
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hyuck-Se Kwon
- R&D Team, Food & Supplement Health Claims, Vitech, #602 Giyeon B/D 141 Anjeon-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Dashti Z, Yousefi Z, Kiani P, Taghizadeh M, Maleki MH, Borji M, Vakili O, Shafiee SM. Autophagy and the unfolded protein response shape the non-alcoholic fatty liver landscape: decoding the labyrinth. Metabolism 2024; 154:155811. [PMID: 38309690 DOI: 10.1016/j.metabol.2024.155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.
Collapse
Affiliation(s)
- Zahra Dashti
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Borji
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Nakashima M, Suga N, Ikeda Y, Yoshikawa S, Matsuda S. Inspiring Tactics with the Improvement of Mitophagy and Redox Balance for the Development of Innovative Treatment against Polycystic Kidney Disease. Biomolecules 2024; 14:207. [PMID: 38397444 PMCID: PMC10886467 DOI: 10.3390/biom14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Polycystic kidney disease (PKD) is the most common genetic form of chronic kidney disease (CKD), and it involves the development of multiple kidney cysts. Not enough medical breakthroughs have been made against PKD, a condition which features regional hypoxia and activation of the hypoxia-inducible factor (HIF) pathway. The following pathology of CKD can severely instigate kidney damage and/or renal failure. Significant evidence verifies an imperative role for mitophagy in normal kidney physiology and the pathology of CKD and/or PKD. Mitophagy serves as important component of mitochondrial quality control by removing impaired/dysfunctional mitochondria from the cell to warrant redox homeostasis and sustain cell viability. Interestingly, treatment with the peroxisome proliferator-activated receptor-α (PPAR-α) agonist could reduce the pathology of PDK and might improve the renal function of the disease via the modulation of mitophagy, as well as the condition of gut microbiome. Suitable modulation of mitophagy might be a favorable tactic for the prevention and/or treatment of kidney diseases such as PKD and CKD.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
5
|
Yi W, Chen F, Yuan M, Wang C, Wang S, Wen J, Zou Q, Pu Y, Cai Z. High-fat diet induces cognitive impairment through repression of SIRT1/AMPK-mediated autophagy. Exp Neurol 2024; 371:114591. [PMID: 37898395 DOI: 10.1016/j.expneurol.2023.114591] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
AIMS Recent evidence suggests an association between a high-fat diet (HFD) and cognitive decline. HFD may reduce synaptic plasticity and cause tau hyperphosphorylation, but the mechanisms involved remain unclear. The purpose of this study was to explore whether Sirtuin1 (SIRT1)/AMP-activated protein kinase (AMPK) pathway was involved in this pathogenic effect in the HFD exposed mice. METHODS C57BL/6 mice at 12 months of age were fed a standard (9% kcal fat) or high-fat (60% kcal fat) diet for 22 weeks, and Neuro-2a (N2a) cells were treated with normal culture medium or a palmitic acid (PA) medium (100uM) for 40 h. After that, cognitive function was tested by Morris water maze (MWM). The levels of proteins involved in SIRT1/AMPK pathway and autophagy were measured using western blotting and immunofluorescence. We also assessed the phosphorylation of tau protein and synapse. RESULTS The mice presented impaired learning and memory abilities. We further found decreased levels of synaptophysin (Syn) and brain-derived neurotrophic factor (BDNF), increased tau46 and phosphorylated tau protein, and damaged neurons in mice after HFD or in N2a cells treated with PA medium. Moreover, HFD can also reduce the expression of SIRT1, inhibit AMPK phosphorylation, and block autophagic flow in both mice and cells. After treating the cells with the SIRT1 agonist SRT1720, SIRT1/AMPK pathway and autophagy-related proteins were partially reversed and the number of PA-induced positive cells was alleviated in senescence-associated β-galactosidase (SA-β-gal) staining. CONCLUSIONS HFD may inhibit the expression of SIRT1/AMPK pathway and disrupt autophagy flux, and result in tau hyperphosphorylation and synaptic dysfunction during aging, which ultimately lead to cognitive decline.
Collapse
Affiliation(s)
- Wenmin Yi
- The fifth Clinical College of Chongqing Medical University, Chongqing 402160, China; Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Fei Chen
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Minghao Yuan
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Chuanling Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China
| | - Shengyuan Wang
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Jie Wen
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China.
| |
Collapse
|
6
|
Zhang Y, Chen Q, Fu X, Zhu S, Huang Q, Li C. Current Advances in the Regulatory Effects of Bioactive Compounds from Dietary Resources on Nonalcoholic Fatty Liver Disease: Role of Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17554-17569. [PMID: 37955247 DOI: 10.1021/acs.jafc.3c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease characterized by lipid metabolic disorder primarily due to sedentary lifestyles and excessive food consumption. However, there are currently no approved and effective drugs available to treat NAFLD. In recent years, research has shown that dietary bioactive compounds, such as polysaccharides, polyphenols, flavones, and alkaloids, have the potential to improve NAFLD by regulating autophagy. However, there is no up-to-date review of research progress in this field. This review aims to systematically summarize and discuss the regulatory effects and molecular mechanisms of dietary bioactive compounds on NAFLD through the modulation of autophagy. The existing research has demonstrated that some dietary bioactive compounds can effectively improve various aspects of NAFLD progression, such as lipid metabolism, insulin resistance (IR), endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial homeostasis, and inflammation. Molecular mechanism studies have revealed that they exert their beneficial effects on NAFLD through autophagy-mediated signaling pathways, predominantly involving transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), SIRT, and PTEN-induced kinase 1 (PINK1)/parkin. Furthermore, the challenges and prospects of current research in this field are highlighted. Overall, this review provides valuable insights into the potential treatment of NAFLD using dietary bioactive compounds that can modulate autophagy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Dietetics, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Li M, Zeng A, Tang X, Xu H, Xiong W, Guo Y. Circ_0004535/miR-1827/CASP8 network involved in type 2 diabetes mellitus with nonalcoholic fatty liver disease. Sci Rep 2023; 13:19807. [PMID: 37957232 PMCID: PMC10643362 DOI: 10.1038/s41598-023-47189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic delay in type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver disease (NAFLD) patients often leads to a serious public health problem. Understanding the pathophysiological mechanisms of disease will help develop more effective treatments. High-throughput sequencing was used to determine the expression levels of circRNAs, and mRNAs in health controls, T2DM patients, and T2DM with NAFLD patients. Differentially expressed genes (DEcircRs, DEmRs) in T2DM with NAFLD were identified by differential analysis. The miRNAs with targeted relationship with the DEcircRs and DEmRs were respectively predicted to construct a ceRNA regulatory network. In addition, enrichment analysis of DEmRs in the ceRNA network was performed. The expression of important DEcircRs was further validated by quantitative real-time PCR (qRT-PCR). The steatosis was detected in glucose treated LO2 cells by overexpressing circ_0004535, and CASP8. There were 586 DEmRs, and 10 DEcircRs in both T2DM and T2DM with NAFLD patients. Combined with predicted results and differential analysis, the ceRNA networks were constructed. The DEmRs in the ceRNA networks were mainly enriched in Toll-like receptor signaling pathway, and apoptosis. Importantly, dual luciferase experiments validated the targeted binding of hsa_circ_0004535 and hsa-miR-1827 or hsa-miR-1827 and CASP8. qRT-PCR experiments validated that hsa_circ_0004535, and CASP8 was downregulated and hsa-miR-1827 was upregulated expression in peripheral blood of T2DM with NAFLD patients. Abnormal cell morphology, and increased lipid droplet fusion were observed in the glucose treated LO2 cells, overexpression of circ_0004535 and CASP8 ameliorated these changes. Our work provides a deeper understanding of ceRNA mediated pathogenesis of T2DM with NAFLD and provides a novel strategy for treatment.
Collapse
Affiliation(s)
- Min Li
- Graduate School of Xinjiang Medical University, Xinshi District, Ürümqi, 830054, China
| | - Ai Zeng
- B Chao Room, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Xinle Tang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Hui Xu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Wei Xiong
- Department of Endocrinology, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Yanying Guo
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes Mellitus, Tianshan District, Ürümqi, 830011, China.
| |
Collapse
|
8
|
Zhang C, Sui Y, Liu S, Yang M. Molecular mechanisms of metabolic disease-associated hepatic inflammation in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. EXPLORATION OF DIGESTIVE DISEASES 2023:246-275. [DOI: https:/doi.org/10.37349/edd.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/05/2023] [Indexed: 11/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, with a progressive form of non-alcoholic steatohepatitis (NASH). It may progress to advanced liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD/NASH is a comorbidity of many metabolic disorders such as obesity, insulin resistance, type 2 diabetes, cardiovascular disease, and chronic kidney disease. These metabolic diseases are often accompanied by systemic or extrahepatic inflammation, which plays an important role in the pathogenesis and treatment of NAFLD or NASH. Metabolites, such as short-chain fatty acids, impact the function, inflammation, and death of hepatocytes, the primary parenchymal cells in the liver tissue. Cholangiocytes, the epithelial cells that line the bile ducts, can differentiate into proliferative hepatocytes in chronic liver injury. In addition, hepatic non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, and innate and adaptive immune cells, are involved in liver inflammation. Proteins such as fibroblast growth factors, acetyl-coenzyme A carboxylases, and nuclear factor erythroid 2-related factor 2 are involved in liver metabolism and inflammation, which are potential targets for NASH treatment. This review focuses on the effects of metabolic disease-induced extrahepatic inflammation, liver inflammation, and the cellular and molecular mechanisms of liver metabolism on the development and progression of NAFLD and NASH, as well as the associated treatments.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Ren LL, Li XJ, Duan TT, Li ZH, Yang JZ, Zhang YM, Zou L, Miao H, Zhao YY. Transforming growth factor-β signaling: From tissue fibrosis to therapeutic opportunities. Chem Biol Interact 2023; 369:110289. [PMID: 36455676 DOI: 10.1016/j.cbi.2022.110289] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Fibrosis refers to the excessive deposition of extracellular matrix components in the processes of wound repair or tissue regeneration after tissue damage. Fibrosis occurs in various organs such as lung, heart, liver, and kidney tissues, resulting in the failure of organ structural integrity and its functional impairment. It has long been thought to be relentlessly progressive and irreversible process, but both preclinical models and clinical trials in multiorgans have shown that fibrosis is a highly dynamic process. Transforming growth factor-beta (TGF-β) is a superfamily of related growth factors. Many studies have described that activation of profibrotic TGF-β signaling promotes infiltration and/or proliferation of preexisting fibroblasts, generation of myofibroblasts, extracellular matrix deposition, and inhibition of collagenolysis, which leads to fibrosis in the pathological milieu. This review describes the effect of TGF-β signaling in fibrotic-associate lung, heart, liver, and kidney tissues, followed by a detailed discussion of canonical and non-canonical TGF-β signaling pathway. In addition, this review also discusses therapeutic options by using natural products and chemical agents, for targeting tissue fibrosis via modulating TGF-β signaling to provide a more specific concept-driven therapy strategy for multiorgan fibrosis.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xiao-Jun Li
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Street, Guangzhou, 510315, China
| | - Ting-Ting Duan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Zheng-Hai Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82 the Second Section of North 2nd Ring Road, Chengdu, Sichuan, 610081, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan, 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China; Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82 the Second Section of North 2nd Ring Road, Chengdu, Sichuan, 610081, China.
| |
Collapse
|
10
|
Isosteviol attenuates DSS-induced colitis by maintaining intestinal barrier function through PDK1/AKT/NF-κB signaling pathway. Int Immunopharmacol 2023; 114:109532. [PMID: 36508925 DOI: 10.1016/j.intimp.2022.109532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic debilitating inflammatory disorders of the gastrointestinal tract that is characterized by intestinal epithelial barrier dysfunction and excessive activation of the mucosal immune system. Isosteviol (IS) has been reported to possess anti-inflammatory properties. In this study, we aimed to investigate effects and mechanisms of IS against intestinal inflammation. C57BL/6 mice were randomly divided into Sham, IS, dextran sodium sulfate (DSS), and DSS + IS groups. In vivo colitis model was established using 3.0 % DSS. In vitro, tumor necrosis factor-α (TNF-α)-treated Caco-2 cells were used as an inflammatory model. Clinical characteristics, histological performance, proinflammatory cytokine expression, and intestinal barrier function were measured. In addition, activation of the pyruvate dehydrogenase kinase 1/protein kinase B/nuclear factor-κB (PDK1/AKT/NF-κB) signaling pathway was determined by western blotting and quantitative polymerase chain reaction. The results showed that IS mitigated DSS-induced colitis by reducing body weight loss, colonic shortening, and disease activity index score, and by inhibiting expressions of proinflammatory cytokines IL-1β, IL-6, and TNF-α. IS restored impaired barrier function by regulating tight junctions and intestinal epithelial permeability. Furthermore, we found that IS ameliorated intestinal barrier injury by regulating PDK1/AKT/NF-κB signaling pathway. In conclusion, our results demonstrate that IS attenuates experimental colitis by preserving intestinal barrier function, probably mediated by PDK1/AKT/NF-κB signaling pathway. These findings highlight the potential of IS as a therapeutic agent for IBD.
Collapse
|
11
|
Lee YH, Kim HJ, You M, Kim HA. Red Pepper Seeds Inhibit Hepatic Lipid Accumulation by Inducing Autophagy via AMPK Activation. Nutrients 2022; 14:nu14204247. [PMID: 36296933 PMCID: PMC9608681 DOI: 10.3390/nu14204247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although the red pepper and its seeds have been studied for metabolic diseases, the effects and potential mechanisms of red pepper seed extract (RPS) on hepatic lipid accumulation are not yet completely understood. This study aimed to evaluate the inhibitory effect of RPS on hepatic lipid accumulation via autophagy. C57BL/6 mice were fed a high-fat diet (HFD) or a HFD supplemented with RPS. RPS treatment inhibited hepatic lipid accumulation by suppressing lipogenesis, inducing hepatic autophagic flux, and activating AMPK in HFD-fed mice. To investigate the effect of RPS on an oleic acid (OA)-induced hepatic steatosis cell model, HepG2 cells were incubated in a high-glucose medium and OA, followed by RPS treatment. RPS treatment decreased OA-induced lipid accumulation and reduced the expression of lipogenesis-associated proteins. Autophagic flux dramatically increased in the RPS-treated group. RPS phosphorylated AMPK in a dose-dependent manner, thereby dephosphorylated mTOR. Autophagy inhibition with 3-methyladenine (3-MA) antagonized RPS-induced suppression of lipogenesis-related protein expressions. Moreover, the knockdown of endogenous AMPK also antagonized the RPS-induced regulation of lipid accumulation and autophagy. Our findings provide new insights into the beneficial effects of RPS on hepatic lipid accumulation through the AMPK-dependent autophagy-mediated downregulation of lipogenesis.
Collapse
Affiliation(s)
- Young-Hyun Lee
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Korea
| | - Hwa-Jin Kim
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Korea
| | - Mikyoung You
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Korea
- Correspondence:
| |
Collapse
|