1
|
Souza LHB, Silva BC, Pompeo JN, Gatto KP, Lourenço LB. Chromosome homologies and polymorphisms in a Neotropical species complex of frogs revealed by the U2 snRNA gene. Genome 2025; 68:1-11. [PMID: 39991861 DOI: 10.1139/gen-2024-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The Physalaemus cuvieri-Physalaemus ephippifer species complex is a Neotropical frog group that encompasses seven well-supported major clades. Although very similar morphologically, the five lineages previously karyotyped show notorious cytogenetic signatures. There is also evidence of ancient secondary contact between P. ephippifer, which has heteromorphic sex chromosomes, and the lineage known as L1B, which lacks sex chromosome heteromorphism. Here, to aid comparative analysis within this complex, we mapped the U2 small nuclear RNA (snRNA) gene using fluorescent in situ hybridization (FISH). All samples presented a U2 snRNA gene cluster terminally in the short arm of chromosome 6. Additional small FISH signals were also revealed, particularly in one lineage with previously noted polymorphism of nucleolar organizer regions. Moreover, one additional site contributed for the analysis of sex chromosomes, since the Z chromosome of P. ephippifer harbors a small FISH signal, which is absent in the W chromosome. In lineage L1B, chromosome 9-which is homologous to the sex chromosomes of P. ephippifer-is polymorphic for a small FISH signal, as did the Z chromosome in the group derived from the contact between these lineages. Finally, nucleotide sequence analysis revealed some truncated gene sequences, suggesting the presence of pseudogenes of the U2 snRNA gene in these frogs.
Collapse
Affiliation(s)
- Lucas Henrique Bonfim Souza
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Bruno Cansanção Silva
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Jennifer Nunes Pompeo
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Kaleb Pretto Gatto
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Laboratório de Citogenética Evolutiva e Conservação Animal, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Luciana Bolsoni Lourenço
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Pompeo JN, Gatto KP, Baldo D, Lourenço LB. Evidence for the Transcription of a Satellite DNA Widely Found in Frogs. Genes (Basel) 2024; 15:1572. [PMID: 39766839 PMCID: PMC11675491 DOI: 10.3390/genes15121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The satellite DNA (satDNA) PcP190 has been identified in multiple frog species from seven phylogenetically distant families within Hyloidea, indicating its broad distribution. This satDNA consists of repeats of approximately 190 bp and exhibits a highly conserved region (CR) of 120 bp, which is similar to the transcribed region of 5S ribosomal DNA (rDNA), and a hypervariable region (HR) that varies in size and nucleotide composition among and within species. Here, to improve our understanding of PcP190 satDNA, we searched for evidence of its transcription in the available transcriptomes of Rhinella marina (Bufonidae) and Engystomops pustulosus (Leptodactylidae), two phylogenetically distantly related species. METHODS We first characterized the 5S rDNA and PcP190 sequences in these species by searching for them in available genome assemblies. Next, we used the PcP190 (CR and HR) and 5S rDNA sequences of each species as queries to search for these sequences in RNA-seq libraries. RESULTS We identified two types of 5S rDNA in each analyzed species, with a new type found in E. pustulosus. Our results also revealed a novel type of PcP190 sequence in R. marina and a new subtype of PcP-1 in E. pustulosus. Transcriptome analyses confirmed the expected transcription of the 5S rRNA gene and showed transcription of both the CR and HR of the PcP190 satDNA in both species and in different tissues. CONCLUSIONS As the entire repeat of this satDNA is susceptible to transcription, the high variability observed in the HR cannot be attributed to transcriptional activity confined to the CR.
Collapse
Affiliation(s)
- Jennifer Nunes Pompeo
- Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil;
| | - Kaleb Pretto Gatto
- Laboratório de Citogenética Evolutiva e Conservação Animal, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil;
| | - Diego Baldo
- Laboratorio de Genética Evolutiva “Claudio Juan Bidau”, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas N3300LQF, Misiones, Argentina;
| | - Luciana Bolsoni Lourenço
- Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil;
| |
Collapse
|
3
|
da Silva MJ, Destro RF, Gazoni T, Parise-Maltempi PP. Interspecific cytogenomic comparison reveals a potential chromosomal centromeric marker in Proceratophrys frog species. Chromosoma 2024; 133:195-202. [PMID: 38546866 DOI: 10.1007/s00412-024-00819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 07/25/2024]
Abstract
Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in P. boiei, prompted our interest for having a high abundance in P. boiei and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four Proceratophrys species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in Proceratophrys frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four Proceratophrys species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related Proceratophrys species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in Proceratophrys species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.
Collapse
Affiliation(s)
- Marcelo João da Silva
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Raquel Fogarin Destro
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Thiago Gazoni
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil.
| |
Collapse
|
4
|
Zhang L, Xiang J, Li J, Zhou J, Hou J, Huang Y, Li H. Karyotype analysis of Quasipaaspinosa David, 1875 (Anura, Dicroglossidae) with conventional cytogenetic techniques. COMPARATIVE CYTOGENETICS 2024; 18:97-103. [PMID: 38948005 PMCID: PMC11214007 DOI: 10.3897/compcytogen.18.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/18/2024] [Indexed: 07/02/2024]
Abstract
The current study analyzed the chromosomal karyotype of Quasipaaspinosa David, 1875 from Hunan Province, China. The karyotype, C-banding, BrdU-banding pattern were characterized using direct preparation of bone-marrow cells and hemocyte cultures. The findings indicated that Q.spinosa was a diploid species (2n = 26) that lacked heteromorphic chromosomes and secondary constrictions. C-banding analysis revealed an abundance of positive signals in the centromere regions, while the BrdU-banding pattern showed three phases in both male and female, occurring consistently and in chronological sequence during S-phase. Notably, there was no asynchronous replication in the late phase. This study enhanced our understanding of the karyotypic structure of Q.spinosa by conventional cytogenetic techniques, thus providing essential scientific insights into the cytogenetics of Q.spinosa.
Collapse
Affiliation(s)
- Liaoruilin Zhang
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Jianguo Xiang
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Juan Li
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Jie Zhou
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Jinliang Hou
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Yanfei Huang
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Hong Li
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| |
Collapse
|
5
|
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, Winkler C, Stöck M. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 2024; 15:4781. [PMID: 38839766 PMCID: PMC11153619 DOI: 10.1038/s41467-024-49025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Baturalp Koyun
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
- Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey
| | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania
- Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
| |
Collapse
|
6
|
Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Krylov V, Kubíčková S, Fokam EB, Badjedjea G, Evans BJ, Knytl M. Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs ( Xenopus, Pipidae). EUR J WILDLIFE RES 2023; 69:81. [PMID: 37483536 PMCID: PMC10361878 DOI: 10.1007/s10344-023-01709-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Repetitive elements have been identified in several amphibian genomes using whole genome sequencing, but few studies have used cytogenetic mapping to visualize these elements in this vertebrate group. Here, we used fluorescence in situ hybridization and genomic data to map the U1 and U2 small nuclear RNAs and histone H3 in six species of African clawed frog (genus Xenopus), including, from subgenus Silurana, the diploid Xenopus tropicalis and its close allotetraploid relative X. calcaratus and, from subgenus Xenopus, the allotetraploid species X. pygmaeus, X. allofraseri, X. laevis, and X. muelleri. Results allowed us to qualitatively evaluate the relative roles of polyploidization and divergence in the evolution of repetitive elements because our focal species include allotetraploid species derived from two independent polyploidization events - one that is relatively young that gave rise to X. calcaratus and another that is older that gave rise to the other (older) allotetraploids. Our results demonstrated conserved loci number and position of signals in the species from subgenus Silurana; allotetraploid X. calcaratus has twice as many signals as diploid X. tropicalis. However, the content of repeats varied among the other allotetraploid species. We detected almost same number of signals in X. muelleri as in X. calcaratus and same number of signals in X. pygmaeus, X. allofraseri, X. laevis as in the diploid X. tropicalis. Overall, these results are consistent with the proposal that allopolyploidization duplicated these tandem repeats and that variation in their copy number was accumulated over time through reduction and expansion in a subset of the older allopolyploids.
Collapse
Affiliation(s)
- Nicola R. Fornaini
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Barbora Bergelová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Halina Černohorská
- Department of Genetics and Reproduction, CEITEC - Veterinary Research Institute, Hudcova 296/70, Brno, 62100 Czech Republic
| | - Vladimír Krylov
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Svatava Kubíčková
- Department of Genetics and Reproduction, CEITEC - Veterinary Research Institute, Hudcova 296/70, Brno, 62100 Czech Republic
| | - Eric B. Fokam
- Department of Animal Biology and Conservation, University of Buea, PO Box 63, Buea, 00237 Cameroon
| | - Gabriel Badjedjea
- Department of Aquatic Ecology, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Ben J. Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1 Canada
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1 Canada
| |
Collapse
|
7
|
João Da Silva M, Gazoni T, Haddad CFB, Parise-Maltempi PP. Analysis in Proceratophrys boiei genome illuminates the satellite DNA content in a frog from the Brazilian Atlantic forest. Front Genet 2023; 14:1101397. [PMID: 37065500 PMCID: PMC10095563 DOI: 10.3389/fgene.2023.1101397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Satellite DNAs (satDNAs) are one of the most abundant elements in genomes. Characterized as tandemly organized sequences that can be amplified into multiple copies, mainly in heterochromatic regions. The frog P. boiei (2n = 22, ZZ♂/ZW♀) is found in the Brazilian Atlantic forest and has an atypical pattern of heterochromatin distribution when compared to other anuran amphibians, with large pericentromeric blocks on all chromosomes. In addition, females of Proceratophrys boiei have a metacentric sex chromosome W showing heterochromatin in all chromosomal extension. In this work, we performed high-throughput genomic, bioinformatic, and cytogenetic analyses to characterize the satellite DNA content (satellitome) in P. boiei, mainly due to high amount of C-positive heterochromatin and the highly heterochromatic W sex chromosome. After all the analyses, it is remarkable that the satellitome of P. boiei is composed of a high number of satDNA families (226), making P. boiei the frog species with the highest number of satellites described so far. Consistent with the observation of large centromeric C-positive heterochromatin blocks, the genome of P. boiei is enriched with high copy number of repetitive DNAs, with total satDNA abundance comprising 16.87% of the genome. We successfully mapped via Fluorescence in situ hybridization the two most abundant repeats in the genome, PboSat01-176 and PboSat02-192, highlighting the presence of certain satDNAs sequences in strategic chromosomal regions (e.g., centromere and pericentromeric region), which leads to their participation in crucial processes for genomic organization and maintenance. Our study reveals a great diversity of satellite repeats that are driving genomic organization in this frog species. The characterization and approaches regarding satDNAs in this species of frog allowed the confirmation of some insights from satellite biology and a possible relationship with the evolution of sex chromosomes, especially in anuran amphibians, including P. boiei, for which data were not available.
Collapse
Affiliation(s)
- Marcelo João Da Silva
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Thiago Gazoni
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Célio Fernando Baptista Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
- *Correspondence: Patricia Pasquali Parise-Maltempi,
| |
Collapse
|
8
|
Guzmán-Markevich K, Roco ÁS, Ruiz-García A, Bullejos M. Cytogenetic Analysis in the Toad Species Bufo spinosus, Bufotes viridis and Epidalea calamita (Anura, Bufonidae) from the Mediterranean Area. Genes (Basel) 2022; 13:genes13081475. [PMID: 36011385 PMCID: PMC9408106 DOI: 10.3390/genes13081475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022] Open
Abstract
Taxonomy in Bufonidae witnessed notable transformations. Bufotes viridis and Epidalea calamita, previously included in genus Bufo, were relocated in other genera, while the genus Bufo was restricted to members of the earlier Bufo bufo group. On the other hand, Bufo bufo sensu lato now includes four species: Bufo bufo, Bufo spinosus, Bufo verrucosissimus and Bufo eichwaldi. In this study, we examined three species of three Bufonidae genera (B. spinosus, B. viridis and E. calamita) by conventional (C-banding and Ag-NOR staining) and molecular (in situ hybridization with probes for telomeric repeats and rDNA loci, and genomic in situ hybridization (GISH)) cytogenetic methods. C-banding patterns are reported for the first time for B. spinosus and E. calamita populations from Iberian Peninsula and for B. viridis from Greece, and reveal several differences with the reported C-banded karyotypes described for other European populations of these species. Silver staining shows size heteromorphisms of the signals at the Nucleolar Organizing Region (NOR). By contrast, FISH with ribosomal probes only reveal size heteromorphism of rDNA sequences in E. calamita, suggesting that the differences observed after silver staining in B. spinosus and B. viridis should be attributed to differences in chromosomal condensation and/or gene activity rather than to differences in the copy number for ribosomal genes. Regarding telomeric repeats, E. calamita is the only species with interstitial telomeric sequences (ITS) located on centromeric regions, probably originated by accumulation of telomeric sequences in the centromeric heterochromatin. Finally, we analyzed the composition and distribution of repetitive sequences by genome in situ hybridization. These experiments reveal the accumulation of repetitive sequences in centromeric regions of the three species, although these sequences are not conserved when species from different genera are compared.
Collapse
|