1
|
Banasik M, Napolitano V, Blat A, Abdulkarim K, Plewka J, Czaplewski C, Gieldon A, Kozak M, Wladyka B, Popowicz G, Dubin G. Structural dynamics of the TPR domain of the peroxisomal cargo receptor Pex5 in Trypanosoma. Int J Biol Macromol 2024; 280:135510. [PMID: 39304044 DOI: 10.1016/j.ijbiomac.2024.135510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Peroxisomal protein import has been identified as a valid target in trypanosomiases, an important health threat in Central and South America. The importomer is built of multiple peroxins (Pex) and structural characterization of these proteins facilitates rational inhibitor development. We report crystal structures of the Trypanosoma brucei and T. cruzi tetratricopeptide repeat domain (TPR) of the cytoplasmic peroxisomal targeting signal 1 (PTS1) receptor Pex5. The structure of the TPR domain of TbPex5 represents an apo-form of the receptor which, together with the previously determined structure of the complex of TbPex5 TPR and PTS1 demonstrate significant receptor dynamics associated with signal peptide recognition. The structure of the complex of TPR domain of TcPex5 with PTS1 provided in this study details the molecular interactions that guide signal peptide recognition at the atomic level in the pathogenic species currently perceived as the most relevant among Trypanosoma. Small - angle X - ray scattering (SAXS) data obtained in solution supports the crystallographic findings on the compaction of the TPR domains of TbPex5 and TcPex5 upon interaction with the cargo.
Collapse
Affiliation(s)
- Michal Banasik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Valeria Napolitano
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Artur Blat
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Karim Abdulkarim
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Biology, College of Science, Salahaddin University-Erbil, Kirkuk Road, 44002 Erbil, Kurdistan Region, Iraq
| | - Jacek Plewka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maciej Kozak
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland; National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392 Kraków, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Phan TN, Park KHP, Shum D, No JH. Identification of Leishmania donovani PEX5-PTS1 Interaction Inhibitors through Fluorescence Polarization-Based High-Throughput Screening. Molecules 2024; 29:1835. [PMID: 38675653 PMCID: PMC11054337 DOI: 10.3390/molecules29081835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Leishmaniasis, an infectious disease caused by pathogenic Leishmania parasites, affects millions of people in developing countries, and its re-emergence in developed countries, particularly in Europe, poses a growing public health concern. The limitations of current treatments and the absence of effective vaccines necessitate the development of novel therapeutics. In this study, we focused on identifying small molecule inhibitors which prevents the interaction between peroxin 5 (PEX5) and peroxisomal targeting signal 1 (PTS1), pivotal for kinetoplastid parasite survival. The Leishmania donovani PEX5, containing a C-terminal tetratricopeptide repeat (TPR) domain, was expressed and purified, followed by the quantification of kinetic parameters of PEX5-PTS1 interactions. A fluorescence polarization-based high-throughput screening assay was developed and small molecules inhibiting the LdPEX5-PTS1 interaction were discovered through the screening of a library of 51,406 compounds. Based on the confirmatory assay, nine compounds showed half maximal inhibitory concentration (IC50) values ranging from 3.89 to 24.50 µM. In silico docking using a homology model of LdPEX5 elucidated that the molecular interactions between LdPEX5 and the inhibitors share amino acids critical for PTS1 binding. Notably, compound P20 showed potent activity against the growth of L. donovani promastigotes, L. major promastigotes, and Trypanosoma brucei blood stream form, with IC50 values of 12.16, 19.21, and 3.06 μM, respectively. The findings underscore the potential of targeting LdPEX5-PTS1 interactions with small molecule inhibitors as a promising strategy for the discovery of new anti-parasitic compounds.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Kyu-Ho Paul Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (K.-H.P.P.); (D.S.)
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (K.-H.P.P.); (D.S.)
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Mahadevan L, Arya H, Droste A, Schliebs W, Erdmann R, Kalel VC. PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival. Front Cell Infect Microbiol 2024; 14:1274506. [PMID: 38510966 PMCID: PMC10952002 DOI: 10.3389/fcimb.2024.1274506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Vishal C. Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|