1
|
Huo J, Han S, Hao X, Zhou Z, Lou J, Li H, Cao J, Yu Y, Mi W, Liu Y. Alterations in the gut microbiome and metabolome in elderly patients with postoperative delirium: A prospective nested case-control study. J Clin Anesth 2025; 103:111833. [PMID: 40228374 DOI: 10.1016/j.jclinane.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVE To elucidate the role of gut microbiota and their metabolites, including short-chain fatty acids (SCFAs) and targeted metabolomics, in the development of postoperative delirium (POD) in elderly patients. DESIGN Prospective nested case-control study. SETTING A Chinese tertiary hospital. PARTICIPANTS Elderly patients underwent elective orthopedic surgery. METHODS Participants were assessed for POD using the 3-min Diagnostic Confusion Assessment Method (3D-CAM). Biological samples, including feces and plasma, were collected. A 1:1 propensity score matching (PSM) was conducted to match POD cases with non-POD cases. 16S ribosomal RNA (rRNA) sequencing and metabolomics analyses were performed on the matched case series. Predictive models were developed using logistic regression analysis, incorporating bacterial genera and metabolites that exhibited significant differences between the two groups as predictors. RESULTS Among 234 patients who were followed up, 41 were diagnosed with POD. A total of 39 cases were matched for both the POD and control groups using PSM. No significant differences were found in the α-diversity and β-diversity of preoperative gut microbiota between the two groups. However, specific bacterial genera, including Romboutsia, Bacteroides faecalis, Blautia mucilaginosa, and Eggerthella lenta, exhibited significant differences. The risk of POD was associated with higher postoperative plasma levels of propionic acid, histidine, aspartate, and ornithine. Logistic regression and receiver operating characteristic curve analyses revealed that indicators derived from the gut microbiota and metabolites could predict POD, with an area under the curve of 0.8413 (95 % confidence interval (CI): 0.7393-0.9434). CONCLUSION This study identified four preoperative bacterial genera and four postoperative plasma metabolites associated with an increased risk of POD in elderly orthopedic patients, suggesting the potential of gut microbiota and metabolite profiles as biomarkers for improving risk prediction and guiding interventions.
Collapse
Affiliation(s)
- Jiang Huo
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Department of Anesthesiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China
| | - Shiyi Han
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Xinyu Hao
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Zhikang Zhou
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingqun Yu
- Department of Anesthesiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Davis L, Higgs M, Snaith A, Lodge TA, Strong J, Espejo-Oltra JA, Kujawski S, Zalewski P, Pretorius E, Hoerger M, Morten KJ. Dysregulation of lipid metabolism, energy production, and oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome, Gulf War Syndrome and fibromyalgia. Front Neurosci 2025; 19:1498981. [PMID: 40129725 PMCID: PMC11931034 DOI: 10.3389/fnins.2025.1498981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Syndrome (GWS), and Fibromyalgia (FM) are complex, chronic illnesses with overlapping clinical features. Symptoms that are reported across these conditions include post-exertional malaise (PEM), fatigue, and pain, yet the etiology of these illnesses remains largely unknown. Diagnosis is challenging in patients with these conditions as definitive biomarkers are lacking; patients are required to meet clinical criteria and often undergo lengthy testing to exclude other conditions, a process that is often prolonged, costly, and burdensome for patients. The identification of reliable validated biomarkers could facilitate earlier and more accurate diagnosis and drive the development of targeted pharmacological therapies that might address the underlying pathophysiology of these diseases. Major driving forces for biomarker identification are the advancing fields of metabolomics and proteomics that allow for comprehensive characterization of metabolites and proteins in biological specimens. Recent technological developments in these areas enable high-throughput analysis of thousands of metabolites and proteins from a variety of biological samples and model systems, that provides a powerful approach to unraveling the metabolic phenotypes associated with these complex diseases. Emerging evidence suggests that ME/CFS, GWS, and FM are all characterized by disturbances in metabolic pathways, particularly those related to energy production, lipid metabolism, and oxidative stress. Altered levels of key metabolites in these pathways have been reported in studies highlighting potential common biochemical abnormalities. The precise mechanisms driving altered metabolic pathways in ME/CFS, GWS, and FM remain to be elucidated; however, the elevated oxidative stress observed across these illnesses may contribute to symptoms and offer a potential target for therapeutic intervention. Investigating the mechanisms, and their role in the disease process, could provide insights into disease pathogenesis and reveal novel treatment targets. As such, comprehensive metabolomic and proteomic analyses are crucial for advancing the understanding of these conditions in-order to identify both common, and unique, metabolic alterations that could serve as diagnostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Leah Davis
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Maisy Higgs
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Ailsa Snaith
- Veterans and Families Institute for Military Social Research, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Tiffany A. Lodge
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - James Strong
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Jose A. Espejo-Oltra
- Department of Pathology, Catholic University of Valencia Saint Vincent Martyr, Valencia, Spain
| | - Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paweł Zalewski
- Department of Exercise Physiology and Functional Anatomy, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, Nicolaus Copernicus University in Torun, Torun, Poland
- Department of Experimental and Clinical Physiology, Warsaw Medical University, Warszawa, Poland
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Hoerger
- Departments of Psychology, Psychiatry, and Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA, United States
| | - Karl J. Morten
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Ma X, Wang XM, Tang GZ, Wang Y, Liu XC, Wang SD, Peng P, Qi XH, Qin XY, Wang YJ, Wang CW, Zhou JN. Alterations of amino acids in older adults with Alzheimer's Disease and Vascular Dementia. Amino Acids 2025; 57:10. [PMID: 39825947 PMCID: PMC11742867 DOI: 10.1007/s00726-024-03442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025]
Abstract
Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls. Several differences in the concentration of amino acids were observed in AD patients compared to both healthy controls and VD patients. However, no significant distinction was found between healthy controls and VD patients. Considering comorbidities, cystine levels were higher in AD than in VD among non-diabetic patients, but not in those with diabetes. Notably, creatine, spermidine, cystine, and tyrosine demonstrated favorable results in decision curve analyses and good discriminative performances, suggesting their potential for clinical application. These fundings give novel perspectives of serum amino acids for predicting metabolic pathways in AD and VD pathogenesis.
Collapse
Affiliation(s)
- Xin Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xin-Meng Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Guo-Zhang Tang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Yi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xue-Chun Liu
- Department of Neurology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, P. R. China
| | - Shuai-Deng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Peng Peng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xiu-Hong Qi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, 230026, P. R. China
| | - Xin-Ya Qin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, 230026, P. R. China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Yue-Ju Wang
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China.
| | - Chen-Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China.
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| |
Collapse
|
4
|
Kiuchi S, Nakaya K, Cooray U, Takeuchi K, Motoike IN, Nakaya N, Taki Y, Koshiba S, Mugikura S, Osaka K, Hozawa A. A Principal Component Analysis of Metabolome and Cognitive Decline Among Japanese Older Adults: Cross-sectional Analysis Using Tohoku Medical Megabank Cohort Study Data. J Epidemiol 2025; 35:39-46. [PMID: 38972731 PMCID: PMC11637816 DOI: 10.2188/jea.je20240099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Dementia is the leading cause of disability and imposes a significant burden on society. Previous studies have suggested an association between metabolites and cognitive decline. Although the metabolite composition differs between Western and Asian populations, studies targeting Asian populations remain scarce. METHODS This cross-sectional study used data from a cohort survey of community-dwelling older adults aged ≥60 years living in Miyagi, Japan, conducted by Tohoku Medical Megabank Organization between 2013 and 2016. Forty-three metabolite variables quantified using nuclear magnetic resonance spectroscopy were used as explanatory variables. Dependent variable was the presence of cognitive decline (≤23 points), assessed by the Mini-Mental State Examination. Principal component (PC) analysis was performed to reduce the dimensionality of metabolite variables, followed by logistic regression analysis to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for cognitive decline. RESULTS A total of 2,940 participants were included (men: 49.0%, mean age: 67.6 years). Among them, 1.9% showed cognitive decline. The first 12 PC components (PC1-PC12) accounted for 71.7% of the total variance. Multivariate analysis showed that PC1, which mainly represented essential amino acids, was associated with lower odds of cognitive decline (OR 0.89; 95% CI, 0.80-0.98). PC2, which mainly included ketone bodies, was associated with cognitive decline (OR 1.29; 95% CI, 1.11-1.51). PC3, which included amino acids, was associated with lower odds of cognitive decline (OR 0.81; 95% CI, 0.66-0.99). CONCLUSION Amino acids are protectively associated with cognitive decline, whereas ketone metabolites are associated with higher odds of cognitive decline.
Collapse
Affiliation(s)
- Sakura Kiuchi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Kumi Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Division of Epidemiology, School of Public Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Upul Cooray
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
| | - Kenji Takeuchi
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Division of Statistics and Data Science, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ikuko N. Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Division of Health Behavioral Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Shunji Mugikura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ken Osaka
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Division of Epidemiology, School of Public Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Escarcega RD, M J VK, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Blasco Conesa MP, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. Neurobiol Dis 2025; 204:106747. [PMID: 39617329 DOI: 10.1016/j.nbd.2024.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vijay Kumar M J
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vasilia E Kyriakopoulos
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Guadalupe J Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
6
|
Escarcega RD, Vijay Kumar MJ, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Conesa MPB, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623108. [PMID: 39605322 PMCID: PMC11601308 DOI: 10.1101/2024.11.11.623108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - M. J. Vijay Kumar
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | | | - Guadalupe J. Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M. Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P. Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W. Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H. Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M. Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S. Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
7
|
Sekiya M, Sakakibara Y, Hirota Y, Ito N, Chikamatsu S, Takei K, Nishijima R, Iijima KM. Decreased plasma nicotinamide and altered NAD + metabolism in glial cells surrounding Aβ plaques in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 202:106694. [PMID: 39374707 DOI: 10.1016/j.nbd.2024.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Amyloid-β (Aβ) accumulation triggers chronic neuroinflammation, initiating AD pathogenesis. Recent clinical trials for anti-Aβ immunotherapy underscore that blood-based biomarkers have significant advantages and applicability over conventional diagnostics and are an unmet clinical need. To further advance ongoing clinical trials and identify novel therapeutic targets for AD, developing additional plasma biomarkers closely associated with pathogenic mechanisms downstream of Aβ accumulation is critically important. To identify plasma metabolites reflective of neuroinflammation caused by Aβ pathology, we performed untargeted metabolomic analyses of the plasma by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) and analyzed the potential roles of the identified metabolic changes in the brain neuroinflammatory response using the female App knock-in (AppNLGF) mouse model of Aβ amyloidosis. The CE-TOFMS analysis of plasma samples from female wild-type (WT) and AppNLGF mice revealed that plasma levels of nicotinamide, a nicotinamide adenine dinucleotide (NAD+) precursor, were decreased in AppNLGF mice, and altered metabolite profiles were enriched for nicotinate/nicotinamide metabolism. In AppNLGF mouse brains, NAD+ levels were unaltered, but mRNA levels of NAD+-synthesizing nicotinate phosphoribosyltransferase (Naprt) and NAD+-degrading Cd38 genes were increased. These enzymes were induced in reactive astrocytes and microglia surrounding Aβ plaques in the cortex and hippocampus of female AppNLGF mouse brains, suggesting neuroinflammation increases NAD+ metabolism. This study suggests plasma nicotinamide could be indicative of the neuroinflammatory response and that nicotinate and nicotinamide metabolism are potential therapeutic targets for AD, by targeting both neuroinflammation and neuroprotection.
Collapse
Affiliation(s)
- Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Reseach Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naoki Ito
- Brain-Skeletal Muscle Connection in Aging Project Team, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
8
|
Arthur R, Jamwal S, Kumar P. A review on polyamines as promising next-generation neuroprotective and anti-aging therapy. Eur J Pharmacol 2024; 978:176804. [PMID: 38950837 DOI: 10.1016/j.ejphar.2024.176804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Neurodegenerative disorders are diseases characterized by progressive degeneration of neurons and associated structures and are a major global issue growing more widespread as the global population's average age increases. Despite several investigations on their etiology, the specific cause of these disorders remains unknown. However, there are few symptomatic therapies to treat these disorders. Polyamines (PAs) (putrescine, spermidine, and spermine) are being studied for their role in neuroprotection, aging and cognitive impairment. They are ubiquitous polycations which have relatively higher concentrations in the brain and possess pleiotropic biochemical activities, including regulation of gene expression, ion channels, mitochondria Ca2+ transport, autophagy induction, programmed cell death, and many more. Their cellular content is tightly regulated, and substantial evidence indicates that their altered levels and metabolism are strongly implicated in aging, stress, cognitive dysfunction, and neurodegenerative disorders. In addition, dietary polyamine supplementation has been reported to induce anti-aging effects, anti-oxidant effects, and improve locomotor abnormalities, and cognitive dysfunction. Thus, restoring the polyamine level is considered a promising pharmacological strategy to counteract neurodegeneration. This review highlights PAs' physiological role and the molecular mechanism underpinning their proposed neuroprotective effect in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
9
|
Tremblay-Franco M, Canlet C, Carriere A, Nakhle J, Galinier A, Portais JC, Yart A, Dray C, Lu WH, Bertrand Michel J, Guyonnet S, Rolland Y, Vellas B, Delrieu J, Barreto PDS, Pénicaud L, Casteilla L, Ader I. Integrative Multimodal Metabolomics to Early Predict Cognitive Decline Among Amyloid Positive Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae077. [PMID: 38452244 PMCID: PMC11000317 DOI: 10.1093/gerona/glae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.
Collapse
Affiliation(s)
- Marie Tremblay-Franco
- Toxalim (Research Center in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Audrey Carriere
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean Nakhle
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Anne Galinier
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
- Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Jean-Charles Portais
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse Biotechnology Institute, INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 792,Toulouse, France
| | - Armelle Yart
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Cédric Dray
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Wan-Hsuan Lu
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Justine Bertrand Michel
- Lipidomic, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France (Biological Sciences Section)
| | - Sophie Guyonnet
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Yves Rolland
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Bruno Vellas
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Julien Delrieu
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Philippe de Souto Barreto
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Luc Pénicaud
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Isabelle Ader
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
10
|
Pan X, Donaghy PC, Roberts G, Chouliaras L, O’Brien JT, Thomas AJ, Heslegrave AJ, Zetterberg H, McGuinness B, Passmore AP, Green BD, Kane JPM. Plasma metabolites distinguish dementia with Lewy bodies from Alzheimer's disease: a cross-sectional metabolomic analysis. Front Aging Neurosci 2024; 15:1326780. [PMID: 38239488 PMCID: PMC10794326 DOI: 10.3389/fnagi.2023.1326780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Background In multifactorial diseases, alterations in the concentration of metabolites can identify novel pathological mechanisms at the intersection between genetic and environmental influences. This study aimed to profile the plasma metabolome of patients with dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), two neurodegenerative disorders for which our understanding of the pathophysiology is incomplete. In the clinical setting, DLB is often mistaken for AD, highlighting a need for accurate diagnostic biomarkers. We therefore also aimed to determine the overlapping and differentiating metabolite patterns associated with each and establish whether identification of these patterns could be leveraged as biomarkers to support clinical diagnosis. Methods A panel of 630 metabolites (Biocrates MxP Quant 500) and a further 232 metabolism indicators (biologically informative sums and ratios calculated from measured metabolites, each indicative for a specific pathway or synthesis; MetaboINDICATOR) were analyzed in plasma from patients with probable DLB (n = 15; age 77.6 ± 8.2 years), probable AD (n = 15; 76.1 ± 6.4 years), and age-matched cognitively healthy controls (HC; n = 15; 75.2 ± 6.9 years). Metabolites were quantified using a reversed-phase ultra-performance liquid chromatography column and triple-quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode, or by using flow injection analysis in MRM mode. Data underwent multivariate (PCA analysis), univariate and receiving operator characteristic (ROC) analysis. Metabolite data were also correlated (Spearman r) with the collected clinical neuroimaging and protein biomarker data. Results The PCA plot separated DLB, AD and HC groups (R2 = 0.518, Q2 = 0.348). Significant alterations in 17 detected metabolite parameters were identified (q ≤ 0.05), including neurotransmitters, amino acids and glycerophospholipids. Glutamine (Glu; q = 0.045) concentrations and indicators of sphingomyelin hydroxylation (q = 0.039) distinguished AD and DLB, and these significantly correlated with semi-quantitative measurement of cardiac sympathetic denervation. The most promising biomarker differentiating AD from DLB was Glu:lysophosphatidylcholine (lysoPC a 24:0) ratio (AUC = 0.92; 95%CI 0.809-0.996; sensitivity = 0.90; specificity = 0.90). Discussion Several plasma metabolomic aberrations are shared by both DLB and AD, but a rise in plasma glutamine was specific to DLB. When measured against plasma lysoPC a C24:0, glutamine could differentiate DLB from AD, and the reproducibility of this biomarker should be investigated in larger cohorts.
Collapse
Affiliation(s)
- Xiaobei Pan
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul C. Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gemma Roberts
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - John T. O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Alan J. Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amanda J. Heslegrave
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Institute, UCL, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Institute, UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Kowloon, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anthony P. Passmore
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Brian D. Green
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joseph P. M. Kane
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Sultana M, Camicioli R, Dixon RA, Whitehead S, Pieruccini-Faria F, Petrotchenko E, Speechley M, Borchers CH, Montero-Odasso M. A Metabolomics Analysis of a Novel Phenotype of Older Adults at Higher Risk of Dementia. J Alzheimers Dis 2024; 99:S317-S325. [PMID: 37781807 DOI: 10.3233/jad-230683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background Older adults presenting with dual-decline in cognition and walking speed face a 6-fold higher risk for dementia compared with those showing no decline. We hypothesized that the metabolomics profile of dual-decliners would be unique even before they show signs of decline in cognition and gait speed. Objective The objective of this study was to determine if plasma metabolomics signatures can discriminate dual-decliners from no decliners, purely cognitive decliners, and purely motor decliners prior to decline. Methods A retrospective cross-sectional study using baseline plasma for untargeted metabolomics analyses to investigate early signals of later dual-decline status in study participants (n = 76) with convenient sampling. Dual-decline was operationalized as decline in gait speed (>10 cm/s) and cognition (>2 points decline in Montreal Cognitive Assessment score) on at least two consecutive 6-monthly assessments. The participants' decliner status was evaluated 3 years after the blood sample was collected. Pair-wise comparison of detected compounds was completed using principal components and hierarchical clustering analyses. Results Analyses did not detect any cluster separation in untargeted metabolomes across baseline groups. However, follow-up analyses of specific molecules detected 4 compounds (17-Hydroxy-12-(hydroxymethyl)-10-oxo-8 oxapentacyclomethyl hexopyranoside, Fleroxacin, Oleic acid, and 5xi-11,12-Dihydroxyabieta-8(14),9(11),12-trien-20-oic acid) were at significantly higher concentration among the dual-decliners compared to non-decliners. The pure cognitive decliner group had significantly lower concentration of six compounds (1,3-nonanediol acetate, 4-(2-carboxyethyl)-2-methoxyphenyl beta-D-glucopyranosiduronic acid, oleic acid, 2E-3-[4-(sulfo-oxy)phenyl] acrylic acid, palmitelaidic acid, and myristoleic acid) compared to the non-decliner group. Conclusions The unique metabolomics profile of dual-decliners warrants follow-up metabolomics analysis. Results may point to modifiable pathways.
Collapse
Affiliation(s)
| | | | - Roger A Dixon
- Psychology Science, University of Alberta, Edmonton, AB, Canada
| | - Shawn Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | | | | | - Mark Speechley
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | | | - Manuel Montero-Odasso
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
12
|
Zinellu A, Tommasi S, Sedda S, Mangoni AA. Circulating arginine metabolites in Alzheimer's disease and vascular dementia: A systematic review and meta-analysis. Ageing Res Rev 2023; 92:102139. [PMID: 38007048 DOI: 10.1016/j.arr.2023.102139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alterations in nitric oxide (NO) synthesis have been reported in Alzheimer's disease and vascular dementia. However, as the measurement of NO in biological samples is analytically challenging, alternative, stable circulatory biomarkers of NO synthesis may be useful to unravel new pathophysiological mechanisms and treatment targets in dementia. METHODS We conducted a systematic review and meta-analysis of the circulating concentrations of arginine metabolites linked to NO synthesis, arginine, citrulline, asymmetric (ADMA) and symmetric (SDMA) dimethylarginine, and ornithine, in Alzheimer's disease and vascular dementia. We searched for relevant studies in PubMed, Scopus, and Web of Science from inception to the 31st of May 2023. The JBI checklist and GRADE were used to assess the risk of bias and the certainty of evidence, respectively. RESULTS In 14 selected studies, there were no significant between-group differences in arginine and ornithine concentrations. By contrast, compared to controls, patients with dementia had significantly higher ADMA (standard mean difference, SMD=0.62, 95% CI 0.06-1.19, p = 0.029), SDMA (SMD=0.70, 95% CI 0.34-1.35, p<0.001), and citrulline concentrations (SMD=0.50, 95% CI 0.08-0.91, p = 0.018). In subgroup analysis, the effect size was significantly associated with treatment with cholinesterase inhibitors and/or antipsychotics for ADMA, and underlying disorder (Alzheimer's disease), study continent, and analytical method for citrulline. CONCLUSION Alterations in ADMA, SDMA, and citrulline, biomarkers of NO synthesis, may be useful to investigate the pathophysiology of different forms of dementia and identify novel therapeutic strategies. (PROSPERO registration number: CRD42023439528).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia; Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia; Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| |
Collapse
|
13
|
Yoshida T, Mori T, Shimizu H, Tachibana A, Yoshino Y, Ochi S, Yamazaki K, Ozaki Y, Kawabe K, Horiuchi F, Komori K, Iga JI, Ueno SI. Analysis of factors related to cognitive impairment in a community-based, complete enumeration survey in Japan: the Nakayama study. Psychogeriatrics 2023; 23:876-884. [PMID: 37483119 DOI: 10.1111/psyg.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND The number of patients with cognitive disorders is rapidly increasing in the world, becoming not only a medical problem, but also a social problem. There have been many reports that various factors are associated with cognitive dysfunction, but the factors have not yet been fully identified. This was a community-based complete enumeration study which aimed to identify risk and protective factors for dementia. METHODS The first phase included all residents aged 65 years or older in a town in Japan. They completed many examinations, such as living conditions questionnaires, physical examination, Mini-Mental State Examination, and brain magnetic resonance imaging. The participants with suspected cognitive impairment underwent additional examinations for detailed evaluation in the second phase. Statistical analysis was performed to identify risk and protective factors for dementia after all participants were diagnosed. RESULTS There were 927 participants in the baseline evaluation; 611 (65.9%) were healthy, 165 (17.8%) had mild cognitive impairment (MCI), and 151 (16.3%) had dementia. The age-standardised prevalence of dementia was 9.5%. Statistical analyses for amnestic MCI and Alzheimer's disease showed that risk factors for cognitive decline were diabetes mellitus, low activities of daily living, and living alone, and that protective factors were history of exercise and drinking habit. CONCLUSION The present findings suggest that several lifestyle-related diseases and factors are associated with cognitive decline. These results support similar findings from previous studies and will be helpful for preventing dementia in the future.
Collapse
Affiliation(s)
- Taku Yoshida
- Department of Psychiatry, Zaidan Niihama Hospital, Niihama, Japan
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Psychiatry, Heisei Hospital, Ozu, Japan
| | - Hideaki Shimizu
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Psychiatry, Heisei Hospital, Ozu, Japan
| | - Ayumi Tachibana
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Psychiatry, Matsukaze Hospital, Shikokuchuou, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kentaro Kawabe
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Fumie Horiuchi
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kenjiro Komori
- Department of Psychiatry, Zaidan Niihama Hospital, Niihama, Japan
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
- Office of Psychology, Department of Psychiatry, Juzen-Yurinoki Hospital, Niihama, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
14
|
Kainuma M, Kawakatsu S, Kim JD, Ouma S, Iritani O, Yamashita KI, Ohara T, Hirano S, Suda S, Hamano T, Hieda S, Yasui M, Yoshiiwa A, Shiota S, Hironishi M, Wada-Isoe K, Sasabayashi D, Yamasaki S, Murata M, Funakoshi K, Hayashi K, Shirafuji N, Sasaki H, Kajimoto Y, Mori Y, Suzuki M, Ito H, Ono K, Tsuboi Y. Metabolic changes in the plasma of mild Alzheimer's disease patients treated with Hachimijiogan. Front Pharmacol 2023; 14:1203349. [PMID: 37377927 PMCID: PMC10292017 DOI: 10.3389/fphar.2023.1203349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Alzheimer's disease (AD), the most prevalent form of dementia, is a debilitating, progressive neurodegeneration. Amino acids play a wide variety of physiological and pathophysiological roles in the nervous system, and their levels and disorders related to their synthesis have been related to cognitive impairment, the core feature of AD. Our previous multicenter trial showed that hachimijiogan (HJG), a traditional Japanese herbal medicine (Kampo), has an adjuvant effect for Acetylcholine estelase inhibitors (AChEIs) and that it delays the deterioration of the cognitive dysfunction of female patients with mild AD. However, there are aspects of the molecular mechanism(s) by which HJG improves cognitive dysfunction that remain unclear. Objectives: To elucidate through metabolomic analysis the mechanism(s) of HJG for mild AD based on changes in plasma metabolites. Methods: Sixty-seven patients with mild AD were randomly assigned to either an HJG group taking HJG extract 7.5 g/day in addition to AChEI or to a control group treated only with AChEI (HJG:33, Control:34). Blood samples were collected before, 3 months, and 6 months after the first drug administration. Comprehensive metabolomic analyses of plasma samples were done by optimized LC-MS/MS and GC-MS/MS methods. The web-based software MetaboAnalyst 5.0 was used for partial least square-discriminant analysis (PLS-DA) to visualize and compare the dynamics of changes in the concentrations of the identified metabolites. Results: The VIP (Variable Importance in Projection) score of the PLS-DA analysis of female participants revealed a significantly higher increase in plasma metabolite levels after HJG administration for 6 months than was seen in the control group. In univariate analysis, the aspartic acid level of female participants showed a significantly higher increase from baseline after HJG administration for 6 months when compared with the control group. Conclusion: Aspartic acid was a major contributor to the difference between the female HJG and control group participants of this study. Several metabolites were shown to be related to the mechanism of HJG effectiveness for mild AD.
Collapse
Affiliation(s)
- Mosaburo Kainuma
- Department of Japanese Oriental Medicine Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shinobu Kawakatsu
- Aizu Medical Center, Department of Neuropsychiatry, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Jun-Dal Kim
- Department of Research and Development, Division of Complex Biosystem Research (CBR), Institute of National Medicine (INM), University of Toyama, Toyama, Japan
| | - Shinji Ouma
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Osamu Iritani
- Department of Geriatric Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Ken-Ichiro Yamashita
- Translational Neuroscience Center, Graduate School of Medicine, International University of Health and Welfare, Tochigi, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shiro Suda
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan
| | - Tadanori Hamano
- Second Department of Internal Medicine, Division of Neurology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sotaro Hieda
- Department of Medicine, Division of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Masaaki Yasui
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Aoi Yoshiiwa
- Department of General Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Seiji Shiota
- Department of General Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Masaya Hironishi
- Department of Internal Medicine, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Kenji Wada-Isoe
- Department of Dementia Medicine, Kawasaki Medical School, Okayama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sho Yamasaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kouta Funakoshi
- Department of Clinical Research Promotion, Kyushu University Hospital, Fukuoka, Japan
| | - Kouji Hayashi
- Department of Rehabilitation, Fukui Health Science University, Fukui, Japan
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Division of Neurology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hirohito Sasaki
- Second Department of Internal Medicine, Division of Neurology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Kajimoto
- Department of Internal Medicine, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Yukiko Mori
- Department of Medicine, Division of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yoshio Tsuboi
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
15
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 261] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
16
|
Yin C, Harms AC, Hankemeier T, Kindt A, de Lange ECM. Status of Metabolomic Measurement for Insights in Alzheimer's Disease Progression-What Is Missing? Int J Mol Sci 2023; 24:ijms24054960. [PMID: 36902391 PMCID: PMC10003384 DOI: 10.3390/ijms24054960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study of biochemical alterations in pathological processes which may be involved in AD progression and to discover new therapeutic targets. In this review, we summarized and analyzed the results from studies on metabolomics analysis performed in biological samples of AD subjects and AD animal models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways among different sample types in human and animal models at different disease stages. We discuss the underlying biochemical mechanisms involved, and the extent to which they could impact the specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for future metabolomics approaches to better understand AD pathogenesis.
Collapse
Affiliation(s)
- Chunyuan Yin
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
17
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|