1
|
Maggioni V, Azevedo-Coste C, Durand S, Bailly F. Optimisation and Comparison of Markerless and Marker-Based Motion Capture Methods for Hand and Finger Movement Analysis. SENSORS (BASEL, SWITZERLAND) 2025; 25:1079. [PMID: 40006308 PMCID: PMC11858933 DOI: 10.3390/s25041079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Ensuring the accurate tracking of hand and fingers movements is an ongoing challenge for upper limb rehabilitation assessment, as the high number of degrees of freedom and segments in the limited volume of the hand makes this a difficult task. The objective of this study is to evaluate the performance of two markerless approaches (the Leap Motion Controller and the Google MediaPipe API) in comparison to a marker-based one, and to improve the precision of the markerless methods by introducing additional data processing algorithms fusing multiple recording devices. Fifteen healthy participants were instructed to perform five distinct hand movements while being recorded by the three motion capture methods simultaneously. The captured movement data from each device was analyzed using a skeletal model of the hand through the inverse kinematics method of the OpenSim software. Finally, the root mean square errors of the angles formed by each finger segment were calculated for the markerless and marker-based motion capture methods to compare their accuracy. Our results indicate that the MediaPipe-based setup is more accurate than the Leap Motion Controller-based one (average root mean square error of 10.9° versus 14.7°), showing promising results for the use of markerless-based methods in clinical applications.
Collapse
Affiliation(s)
- Valentin Maggioni
- Contrôle Artificiel de Mouvements et de Neuroprothèses Intuitives (CAMIN), Institut National de Recherche en Informatique et en Automatique (INRIA), Centre d’Université Côte d’Azur, Université de Montpellier, 34090 Montpellier, France; (C.A.-C.); (F.B.)
| | | | | | | |
Collapse
|
2
|
Chen W, Wang S, Bao J, Yu C, Jiang Q, Song J, Zheng Y, Hao Y, Xu K. Restoration of coherent reach-grasp-pull movement via sequential intraneural peripheral nerve stimulation in rats. J Neural Eng 2024; 21:046007. [PMID: 38885677 DOI: 10.1088/1741-2552/ad5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.Peripheral nerve stimulation (PNS) has been demonstrated as an effective way to selectively activate muscles and to produce fine hand movements. However, sequential multi-joint upper limb movements, which are critical for paralysis rehabilitation, has not been tested with PNS. Here, we aimed to restore multiple upper limb joint movements through an intraneural interface with a single electrode, achieving coherent reach-grasp-pull movement tasks through sequential stimulation.Approach.A transverse intrafascicular multichannel electrode was implanted under the axilla of the rat's upper limb, traversing the musculocutaneous, radial, median, and ulnar nerves. Intramuscular electrodes were implanted into the biceps brachii (BB), triceps brachii (TB), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles to record electromyographic (EMG) activity and video recordings were used to capture the kinematics of elbow, wrist, and digit joints. Charge-balanced biphasic pulses were applied to different channels to recruit distinct upper limb muscles, with concurrent recording of EMG signals and joint kinematics to assess the efficacy of the stimulation. Finally, a sequential stimulation protocol was employed by generating coordinated pulses in different channels.Main results.BB, TB, FCR and ECR muscles were selectively activated and various upper limb movements, including elbow flexion, elbow extension, wrist flexion, wrist extension, digit flexion, and digit extension, were reliably generated. The modulation effects of stimulation parameters, including pulse width, amplitude, and frequency, on induced joint movements were investigated and reach-grasp-pull movement was elicited by sequential stimulation.Significance.Our results demonstrated the feasibility of sequential intraneural stimulation for functional multi-joint movement restoration, providing a new approach for clinical rehabilitation in paralyzed patients.
Collapse
Affiliation(s)
- Weihuang Chen
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, People's Republic of China
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Suhao Wang
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jieting Bao
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Chaonan Yu
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
| | - Qianqian Jiang
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jizhou Song
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yongte Zheng
- Cereblink (Hangzhou) Technology Co., Ltd, Hangzhou, People's Republic of China
| | - Yaoyao Hao
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, People's Republic of China
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Xi P, Yao Q, Liu Y, He J, Tang R, Lang Y. Biomimetic Peripheral Nerve Stimulation Promotes the Rat Hindlimb Motion Modulation in Stepping: An Experimental Analysis. CYBORG AND BIONIC SYSTEMS 2024; 5:0131. [PMID: 38966124 PMCID: PMC11223769 DOI: 10.34133/cbsystems.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 07/06/2024] Open
Abstract
Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke, spinal cord injury, or other diseases. However, most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves. Using the electrical nerve stimulation method, we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing. A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform. Then, characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established. Finally, by testing the selected stimulation parameters in anesthetized rats, we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements. Thus, this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.
Collapse
Affiliation(s)
- Pengcheng Xi
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Qingyu Yao
- National Engineering Research Center of Neuromodulation,
Tsinghua University, Beijing, People’s Republic of China
| | - Yafei Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Jiping He
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Rongyu Tang
- Institute of Semiconductors,
Chinese Academy of Science, Beijing, People’s Republic of China
| | - Yiran Lang
- School of Life Science,
Beijing Institute of Technology, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Losanno E, Ceradini M, Agnesi F, Righi G, Del Popolo G, Shokur S, Micera S. A Virtual Reality-Based Protocol to Determine the Preferred Control Strategy for Hand Neuroprostheses in People With Paralysis. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2261-2269. [PMID: 38865234 DOI: 10.1109/tnsre.2024.3413192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hand neuroprostheses restore voluntary movement in people with paralysis through neuromodulation protocols. There are a variety of strategies to control hand neuroprostheses, which can be based on residual body movements or brain activity. There is no universally superior solution, rather the best approach may vary from patient to patient. Here, we propose a protocol based on an immersive virtual reality (VR) environment that simulates the use of a hand neuroprosthesis to allow patients to experience and familiarize themselves with various control schemes in clinically relevant tasks and choose the preferred one. We used our VR environment to compare two alternative control strategies over 5 days of training in four patients with C6 spinal cord injury: (a) control via the ipsilateral wrist, (b) control via the contralateral shoulder. We did not find a one-fits-all solution but rather a subject-specific preference that could not be predicted based only on a general clinical assessment. The main results were that the VR simulation allowed participants to experience the pros and cons of the proposed strategies and make an educated choice, and that there was a longitudinal improvement. This shows that our VR-based protocol is a useful tool for personalization and training of the control strategy of hand neuroprostheses, which could help to promote user comfort and thus acceptance.
Collapse
|
5
|
Lysak A, Farnebo S, Geuna S, Dahlin LB. Muscle preservation in proximal nerve injuries: a current update. J Hand Surg Eur Vol 2024; 49:773-782. [PMID: 38819009 DOI: 10.1177/17531934231216646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Optimal recovery of muscle function after proximal nerve injuries remains a complex and challenging problem. After a nerve injury, alterations in the affected muscles lead to atrophy, and later degeneration and replacement by fat-fibrous tissues. At present, several different strategies for the preservation of skeletal muscle have been reported, including various sets of physical exercises, muscle massage, physical methods (e.g. electrical stimulation, magnetic field and laser stimulation, low-intensity pulsed ultrasound), medicines (e.g. nutrients, natural and chemical agents, anti-inflammatory and antioxidants, hormones, enzymes and enzyme inhibitors), regenerative medicine (e.g. growth factors, stem cells and microbiota) and surgical procedures (e.g. supercharge end-to-side neurotization). The present review will focus on methods that aimed to minimize the damage to muscles after denervation based on our present knowledge.
Collapse
Affiliation(s)
- Andrii Lysak
- Institute of Traumatology and Orthopedics of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Lars B Dahlin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Kanakis AK, Benetos IS, Evangelopoulos DS, Vlamis J, Vasiliadis ES, Kotroni A, Pneumaticos SG. Electrical Stimulation and Motor Function Rehabilitation in Spinal Cord Injury: A Systematic Review. Cureus 2024; 16:e61436. [PMID: 38947571 PMCID: PMC11214755 DOI: 10.7759/cureus.61436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Spinal cord injury (SCI) often leads to devastating motor impairments, significantly affecting the quality of life of affected individuals. Over the last decades, spinal cord electrical stimulation seems to have encouraging effects on the motor recovery of impacted patients. This review aimed to identify clinical trials focused on motor function recovery through the application of epidural electrical stimulation, transcutaneous electrical stimulation, and functional electrical stimulation. Several clinical trials met these criteria, focusing on the impact of the aforementioned interventions on walking, standing, swimming, trunk stability, and upper extremity functionality, particularly grasp. After a thorough PubMed online database research, 37 clinical trials were included in this review, with a total of 192 patients. Many of them appeared to have an improvement in function, either clinically assessed or recorded through electromyography. This review outlines the various ways electrical stimulation techniques can aid in the motor recovery of SCI patients. It stresses the ongoing need for medical research to refine these techniques and ultimately enhance rehabilitation results in clinical settings.
Collapse
Affiliation(s)
- Asterios K Kanakis
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Ioannis S Benetos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | | | - John Vlamis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Elias S Vasiliadis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Aikaterini Kotroni
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Spyros G Pneumaticos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| |
Collapse
|
7
|
Taghlabi KM, Cruz-Garza JG, Hassan T, Potnis O, Bhenderu LS, Guerrero JR, Whitehead RE, Wu Y, Luan L, Xie C, Robinson JT, Faraji AH. Clinical outcomes of peripheral nerve interfaces for rehabilitation in paralysis and amputation: a literature review. J Neural Eng 2024; 21:011001. [PMID: 38237175 DOI: 10.1088/1741-2552/ad200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Peripheral nerve interfaces (PNIs) are electrical systems designed to integrate with peripheral nerves in patients, such as following central nervous system (CNS) injuries to augment or replace CNS control and restore function. We review the literature for clinical trials and studies containing clinical outcome measures to explore the utility of human applications of PNIs. We discuss the various types of electrodes currently used for PNI systems and their functionalities and limitations. We discuss important design characteristics of PNI systems, including biocompatibility, resolution and specificity, efficacy, and longevity, to highlight their importance in the current and future development of PNIs. The clinical outcomes of PNI systems are also discussed. Finally, we review relevant PNI clinical trials that were conducted, up to the present date, to restore the sensory and motor function of upper or lower limbs in amputees, spinal cord injury patients, or intact individuals and describe their significant findings. This review highlights the current progress in the field of PNIs and serves as a foundation for future development and application of PNI systems.
Collapse
Affiliation(s)
- Khaled M Taghlabi
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Jesus G Cruz-Garza
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Taimur Hassan
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Ojas Potnis
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, United States of America
| | - Lokeshwar S Bhenderu
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Jaime R Guerrero
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Rachael E Whitehead
- Department of Academic Affairs, Houston Methodist Academic Institute, Houston, TX 77030, United States of America
| | - Yu Wu
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Lan Luan
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Chong Xie
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Jacob T Robinson
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
8
|
Pellot-Cestero JE, Herring EZ, Graczyk EL, Memberg WD, Kirsch RF, Ajiboye AB, Miller JP. Implanted Electrodes for Functional Electrical Stimulation to Restore Upper and Lower Extremity Function: History and Future Directions. Neurosurgery 2023; 93:965-970. [PMID: 37288972 DOI: 10.1227/neu.0000000000002561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023] Open
Abstract
Functional electrical stimulation (FES) to activate nerves and muscles in paralyzed extremities has considerable promise to improve outcome after neurological disease or injury, especially in individuals who have upper motor nerve dysfunction due to central nervous system pathology. Because technology has improved, a wide variety of methods for providing electrical stimulation to create functional movements have been developed, including muscle stimulating electrodes, nerve stimulating electrodes, and hybrid constructs. However, in spite of decades of success in experimental settings with clear functional improvements for individuals with paralysis, the technology has not yet reached widespread clinical translation. In this review, we outline the history of FES techniques and approaches and describe future directions in evolution of the technology.
Collapse
Affiliation(s)
- Joel E Pellot-Cestero
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Eric Z Herring
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Emily L Graczyk
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland , Ohio , USA
| | - William D Memberg
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland , Ohio , USA
| | - Robert F Kirsch
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland , Ohio , USA
| | - A Bolu Ajiboye
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland , Ohio , USA
| | - Jonathan P Miller
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland , Ohio , USA
| |
Collapse
|