1
|
Liu L, Dai J, Yang Q, Lv L. A comprehensive review on anti-allergic natural bioactive compounds for combating food allergy. Food Res Int 2025; 201:115565. [PMID: 39849714 DOI: 10.1016/j.foodres.2024.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/18/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Food allergy poses a great challenge to food safety and public health worldwide. Currently, clinical symptoms are primarily managed with medications, which can lead to drug resistance, adverse effects, and disruptions in gut flora balance. As a result, there has been a focus on researching safe and effective anti-allergic natural ingredients. This paper provides a comprehensive overview of food allergy mechanisms, methods of assessment of anti-food allergy studies, and a classification of natural substances with anti-allergic properties. It also examines the anti-allergic effects of these substances on food allergies and investigates gut microbiota changes induced by these natural bioactives, highlighting their significance to food allergies.Natural actives with anti-food allergic properties may alleviate allergic reactions through multiple targets and pathways. These mechanisms include promoting a shift in the Th1/Th2 balance, reducting IgE synthesis, preventing cellular degranulation and reducing the release of allergic mediator. The gut environment is closely related to food allergy and there is a significant interaction between the two. By targeting the intestinal flora, we can adopt dietary interventions to effectively address and control food allergies. This provides valuable insights for the future development of functional foods targeting the alleviation of food allergies.
Collapse
Affiliation(s)
- Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Dai
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
2
|
Ma R. Clinical Control and Quality of Life in Patients With Chronic Rhinosinusitis With Asthma: A Study on the Effects of Endoscopic Sinus Surgery. Otolaryngol Head Neck Surg 2025; 172:313-320. [PMID: 39529590 DOI: 10.1002/ohn.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To determine the impact of endoscopic sinus surgery (ESS) on chronic rhinosinusitis with asthma (CRSwA) patients' clinical control and quality of life. STUDY DESIGN A randomized controlled trial involving 150 CRSwA patients, equally divided into surgical and control groups. SETTING Participants were matched for age, gender, illness duration, and computed tomography (CT) grading of the sinuses. METHODS Random allocation was conducted using a computer-generated table. RESULTS The surgical group exhibited significant symptom score improvements across all metrics (P < .001). Lung function parameters showed substantial gains, with forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratios significantly higher than the control group (P < .001). Quality of life scores, measured by RQLQ and AQLQ, improved significantly in the surgical group (P < .001). At 6 months, correlations between lung function and CT grading of the sinuses were evident, with negative and positive correlations, respectively (P < .05). Inflammatory markers and medication usage were notably reduced (P < .001, P < .05), with low adverse event rates (1%). CONCLUSION ESS is effective in enhancing clinical outcomes and quality of life for CRSwA patients, reducing inflammation and medication needs, thus supporting its use as a beneficial treatment.
Collapse
Affiliation(s)
- Rongfeng Ma
- Department of Otolaryngology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
3
|
Chen YW, Wu MY, Huang NJ, Wu MS, Hsu YH, Liao CT, Chen CH. Therapeutic Potential of Oligo-Fucoidan in Mitigating Peritoneal Dialysis-Associated Fibrosis. Mar Drugs 2024; 22:529. [PMID: 39728104 DOI: 10.3390/md22120529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis. High-glucose PD solution (Dianeal 4.25%, Baxter) increased protein expression of mesothelial-mesenchymal transition (MMT) markers, such as N-cadherin and α-SMA in MeT-5A cells, whereas it decreased catalase expression and stimulated the production of reactive oxygen species (ROS). Furthermore, macrophage influx and increased serum pro-inflammatory cytokines, such as IL-1β, MCP-1, and TNF-α, were observed in the PD mouse model. Interestingly, we discovered that oligo-fucoidan, an oligosaccharide extract from brown seaweed, successfully prevented PD-associated peritoneal thickening and fibrosis through antioxidant effect, downregulation of MMT markers, and attenuation of peritoneal and systemic inflammation. Hence, oligo-fucoidan has the potential to be developed into a novel preventive strategy for PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Nai-Jen Huang
- Department of Internal Medicine, Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Mai-Szu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Ho Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Department of Internal Medicine, Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Department of Internal Medicine, Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
4
|
Jiang Y, Zhao Y, Liu Z, Fang JKH, Lai KP, Li R. Roles and mechanisms of fucoidan against dermatitis: A review. Int J Biol Macromol 2024; 279:135268. [PMID: 39233164 DOI: 10.1016/j.ijbiomac.2024.135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Fucoidan is a sulfate-containing polysaccharide derived from the cell walls of brown algae and marine invertebrates. Fucoidan is widely used for the treatment of various diseases owing to its various biological activities. Dermatitis is an inflammatory reaction that affects the skin. The primary clinical manifestations include atopic dermatitis (AD or eczema) and various subtypes of contact dermatitis. The treatment of dermatitis primarily improves symptoms and reduces inflammation. However, owing to individual variations, some patients have a poor prognosis or symptom recurrence after conventional treatment. Owing to the excellent anti-allergic and anti-inflammatory activities of the low cost nature compound fucoidan, its therapeutic effect in inflammatory diseases has recently attracted the attention of researchers. This article summarizes and analyzes the advantages and pharmacological mechanisms of fucoidan against dermatitis to provide a reference for the selection of drugs for the treatment of dermatitis.
Collapse
Affiliation(s)
- Yingqi Jiang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Yin Zhao
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Zhuoqing Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China.
| |
Collapse
|
5
|
Mashayekhi-Sardoo H, Rezaee R, Yarmohammadi F, Karimi G. Targeting Endoplasmic Reticulum Stress by Natural and Chemical Compounds Ameliorates Cisplatin-Induced Nephrotoxicity: A Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04351-w. [PMID: 39212819 DOI: 10.1007/s12011-024-04351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin is a chemotherapeutic that dose-dependently causes renal complications such as decreased kidney function and acute kidney injury. The endoplasmic reticulum (ER) is responsible for calcium homeostasis and protein folding and plays a major part in cisplatin's nephrotoxicity. The current article reviews how chemical and natural compounds modulate cisplatin-induced apoptosis, autophagy, and inflammation by inhibiting ER stress signaling pathways. The available evidence indicates that natural compounds (Achyranthes aspera water-soluble extract, morin hydrate, fucoidan, isoliquiritigenin, leonurine, epigallocatechin-3-gallate, grape seed proanthocyanidin, and ginseng polysaccharide) and chemicals (Sal003, NSC228155, TUG891, dorsomorphin (compound C), HC-030031, dexmedetomidine, and recombinant human erythropoietin (rHuEpo)) can alleviate cisplatin nephrotoxicity by suppression of ER stress signaling pathways including IRE1α/ASK1/JNK, PERK-eIF2α-ATF4, and ATF6, as well as PI3K/AKT signaling pathway. Since ER and related signaling pathways are important in cisplatin nephrotoxicity, agents that can inhibit the abovementioned signaling pathways may hold promise in alleviating this untoward adverse effect.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical, P. O. Box, Sciences, Mashhad, 1365-91775, Iran.
| |
Collapse
|
6
|
Repici A, Hasan A, Capra AP, Scuderi SA, Paterniti I, Campolo M, Ardizzone A, Esposito E. Marine Algae and Deriving Biomolecules for the Management of Inflammatory Bowel Diseases: Potential Clinical Therapeutics to Decrease Gut Inflammatory and Oxidative Stress Markers? Mar Drugs 2024; 22:336. [PMID: 39195452 DOI: 10.3390/md22080336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The term "inflammatory bowel disease" (IBD) describes a class of relapse-remitting conditions that affect the gastrointestinal (GI) tract. Among these, Crohn's disease (CD) and ulcerative colitis (UC) are two of the most globally prevalent and debilitating conditions. Several articles have brought attention to the significant role that inflammation and oxidative stress cooperatively play in the development of IBD, offering a different viewpoint both on its etiopathogenesis and on strategies for the effective treatment of these conditions. Marine ecosystems may be a significant source of physiologically active substances, supporting the search for new potential clinical therapeutics. Based on this evidence, this review aims to comprehensively evaluate the activity of marine algae and deriving biomolecules in decreasing pathological features of CD and UC. To match this purpose, a deep search of the literature on PubMed (MEDLINE) and Google Scholar was performed to highlight primary biological mechanisms, the modulation of inflammatory and oxidative stress biochemical parameters, and potential clinical benefits deriving from marine species. From our findings, both macroalgae and microalgae have shown potential as therapeutic solutions for IBD due to their bioactive compounds and their anti-inflammatory and antioxidant activities which are capable of modulating markers such as cytokines, the NF-κB pathway, reactive oxidative and nitrosative species (ROS and RNS), trefoil factor 3 (TFF3), lactoferrin, SIRT1, etc. However, while we found promising preclinical evidence, more extensive and long-term clinical studies are necessary to establish the efficacy and safety of marine algae for IBD treatment.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
- School of Advanced Studies, Center of Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
8
|
Zhu Z, Luo J, Li L, Wang D, Xu Q, Teng J, Zhou J, Sun L, Yu N, Zuo D. Fucoidan suppresses proliferation and epithelial-mesenchymal transition process via Wnt/β-catenin signalling in hemangioma. Exp Dermatol 2024; 33:e15027. [PMID: 38514926 DOI: 10.1111/exd.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Hemangioma is a common benign tumour that usually occurs on the skin of the head and neck, particularly among infants. The current clinical treatment against hemangioma is surgery excision, however, application of drug is a safer and more economical therapy for children suffering from hemangioma. As a natural sulfated polysaccharide rich in brown algae, fucoidan is widely recognized for anti-tumour bioactivity and dosage safety in humans. This study aims to demonstrate the anti-tumour effect and underlying mechanism of fucoidan against hemangioma in vivo and in vitro. We investigated the effects of fucoidan by culturing hemangioma cells in vitro and treating BALB/c mice bearing with hemangioma. At first, we measured the cell proliferation and migration ability through in vitro experiments. Then, we tested the expression of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related biomarkers by western blot and qPCR. Furthermore, we applied β-catenin-specific inhibitor, XAV939, to determine whether fucoidan suppressed EMT via the Wnt/β-catenin pathway in hemangioma cells. In vivo experiments, we applied oral gavage of fucoidan to treat EOMA-bearing mice, along with evaluating the safety and efficacy of fucoidan. We found that fucoidan remarkably inhibits the proliferation and EMT ability of hemangioma cells, which is dependent on the Wnt/β-catenin pathway. These results suggest that fucoidan exhibits tumour inhibitory effect on aggressive hemangioma via regulating the Wnt/β-catenin signalling pathway both in vitro and in vivo, providing a new potent drug candidate for treating hemangioma.
Collapse
Affiliation(s)
- Zhengyumeng Zhu
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialiang Luo
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Qishan Xu
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianan Teng
- Department of Dermatology, Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ledong Sun
- Department of Dermatology, Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nansheng Yu
- Department of Dermatology, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, Guangdong, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Liu YJ, Gao KX, Peng X, Wang Y, Wang JY, Hu MB. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int J Biol Macromol 2024; 260:129431. [PMID: 38237839 DOI: 10.1016/j.ijbiomac.2024.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Despite significant progress in diagnosis and treatment, asthma remains a serious public health challenge. The conventional therapeutic drugs for asthma often have side effects and unsatisfactory clinical efficacy. Therefore, it is very urgent to develop new drugs to overcome the shortcomings of conventional drugs. Natural polysaccharides provide enormous resources for the development of drugs or health products, and they are receiving a lot of attention from scientists around the world due to their safety, effective anti-inflammatory and immune regulatory properties. Increasing evidence shows that polysaccharides have favorable biological activities in the respiratory disease, including asthma. This review provides an overview of primary literature on the recent advances of polysaccharides from natural resources in the treatment of asthma. The mechanisms and practicability of polysaccharides, including polysaccharides from plants, fungus, bacteria, alga, animals and others are reviewed. Finally, the further research of polysaccharides in the treatment of asthma are discussed. This review can provide a basis for further study of polysaccharides in the treatment of asthma and provides guidance for the development and clinical application of novel asthma treatment drugs.
Collapse
Affiliation(s)
- Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|