1
|
Wan Q, Chen L, Xu J, Ma D, Li W, Zhang S, Li Y, Jin W, Zhang J. Interactions of nematodes and ammonia-oxidizing bacteria mediate nitrification in two contrasting soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125706. [PMID: 40382926 DOI: 10.1016/j.jenvman.2025.125706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Ammonia oxidation, the first and rate-limiting step of nitrification, is essential for converting ammonium (NH4+) to nitrite (NO2-) in soil, and is a key process in nitrogen (N) cycling that supports crop growth in agroecosystems. Previous research has focused on the impacts of ammonia-oxidizing microbes on soil nitrification under agricultural management, but the influence of the interaction between microfauna, particularly nematodes, and ammonia-oxidizing microbes on soil nitrification remains unclear. In this study, we selected four rates of N applied to lime concretion black soil and fluvo-aquic soil and tested the effect of the interplay of nematodes with ammonia-oxidizing archaea (AOA) and bacteria (AOB) on the potential nitrification rate (PNR). The results demonstrated that the application of N to the fluvo-aquic soil led to an increase in the PNR, as well as a significant enhancement in the abundance of copies of the AOA and AOB amoA genes. However, no consistent outcomes were observed in the lime concretion black soil. The application of N increased the relative abundance of bacterivorous nematodes, particularly Chiloplacus, in the fluvo-aquic soil, but it decreased their relative abundance in the lime concretion black soil. A co-occurrence network analysis indicated that the AOB nodes accounted for a higher proportion in the network and had more potential associations with bacterivorous nematodes in the fluvo-aquic soil. The partial least-squares path model suggests that bacterivorous nematodes positively regulated the AOB and further influenced the PNR in the fluvo-aquic soil. These results provide novel insights into our understanding of the processes of soil nitrification, as well as the interactions between soil microorganisms and nematodes.
Collapse
Affiliation(s)
- Qing Wan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Chen
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghao Ma
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Wei Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shixiu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130012, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiwei Jin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiabao Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
2
|
Liu Y, Chen Y, Penttinen P, Chen X, Duan P, Fan F, Xiong W, Liu M, Tang X, Peng D, Xu K. Both AOA and AOB contribute to nitrification and show linear correlation with nitrate leaching in purple soils with a wide nitrogen gradient. ENVIRONMENTAL RESEARCH 2025; 264:120403. [PMID: 39577732 DOI: 10.1016/j.envres.2024.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ammonia oxidizers play an important role in nitrification that forms nitrate, the main form of leaching nitrogen (N). However, little is known about how ammonia oxidizers bridge long-term N fertilization levels and soil nitrate leaching. We conducted a field experiment in purple soil, investigating the interactions among soil physico-chemical parameters, ammonia-oxidizing microbial communities, and N leaching under 0, 90, 180, 270, and 360 kg N ha-1 yr-1 fertilization levels. We found that soil inorganic N leaching increased exponentially with increasing N application rate. N fertilization enhanced the abundances of the amoA gene in ammonia-oxidizing archaea (AOA) and bacteria (AOB), while partial least squares regression analysis revealed that AOA and AOB abundances were correlated with pH and soil organic carbon (SOC). Compared with no N fertilization, N application reduced AOA alpha diversity and increased AOB alpha diversity. AOA alpha diversity was associated with pH and bulk density, whereas soil SOC and inorganic N content were more important in predicting changes in AOB alpha diversity. A linear relationship was established between soil NO3--N leaching, the potential nitrification rate (PNR), and the abundances of AOA and AOB. The association of soil NO3--N leaching and PNR with both AOA and AOB abundances were further corroborated by Mantel test, random forest regression, and partial least squares path modelling. Furthermore, alterations in the AOB alpha diversity, soil pH and NH4+-N content also contribute to the increasing soil NO3--N leaching along the N application rate. Our results suggest that AOA, which previous studies have found to be active only under low N conditions, can also contribute to nitrification and support soil NO3--N leaching at a wide range of N gradients. Overall, this finding advances the current understanding of the relationship between soil N leaching and microbial functional properties to some extent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxue Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaohui Chen
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Fenliang Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiyi Xiong
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Mingpeng Liu
- Pingshan County Agriculture and Rural Bureau, Yibin, 644000, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dandan Peng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaiwei Xu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Rojas-Pinzon PA, Prommer J, Sedlacek CJ, Sandén T, Spiegel H, Pjevac P, Fuchslueger L, Giguere AT. Inhibition profile of three biological nitrification inhibitors and their response to soil pH modification in two contrasting soils. FEMS Microbiol Ecol 2024; 100:fiae072. [PMID: 38702852 PMCID: PMC11110862 DOI: 10.1093/femsec/fiae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Up to 70% of the nitrogen (N) fertilizer applied to agricultural soils is lost through microbially mediated processes, such as nitrification. This can be counteracted by synthetic and biological compounds that inhibit nitrification. However, for many biological nitrification inhibitors (BNIs), the interaction with soil properties, nitrifier specificity, and effective concentrations are unclear. Here, we investigated three synthetic nitrification inhibitors (SNIs) (DCD, DMPP, and nitrapyrin) and three BNIs [methyl 3(4-hydroxyphenyl) propionate (MHPP), methyl 3(4-hydroxyphenyl) acrylate (MHPA), and limonene] in two agricultural soils differing in pH and nitrifier communities. The efficacies of SNIs and BNIs were resilient to short-term pH changes in the neutral pH soil, whereas the efficacy of some BNIs increased by neutralizing the alkaline soil. Among the BNIs, MHPA showed the highest inhibition and was, together with MHPP, identified as a putative AOB/comammox-selective inhibitor. Additionally, MHPA and limonene effectively inhibited nitrification at concentrations comparable to those used for DCD. Moreover, we identified the effective concentrations at which 50% and 80% of inhibition is observed (EC50 and EC80) for the BNIs, and similar EC80 values were observed in both soils. Overall, our results show that these BNIs could potentially serve as effective alternatives to SNIs currently used.
Collapse
Affiliation(s)
- Paula A Rojas-Pinzon
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Judith Prommer
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Taru Sandén
- Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
| | - Heide Spiegel
- Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Environment and Climate Hub, University of Vienna, Augasse 2/6, 1090 Vienna, Austria
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Environment and Climate Hub, University of Vienna, Augasse 2/6, 1090 Vienna, Austria
| | - Andrew T Giguere
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
4
|
Deng N, Gubry-Rangin C, Song XT, Ju XT, Liu SY, Shen JP, Di HJ, Han LL, Zhang LM. AOB Nitrosospira cluster 3a.2 (D11) dominates N 2O emissions in fertilised agricultural soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120504. [PMID: 38447513 DOI: 10.1016/j.jenvman.2024.120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Ammonia-oxidation process directly contribute to soil nitrous oxide (N2O) emissions in agricultural soils. However, taxonomy of the key nitrifiers (within ammonia oxidising bacteria (AOB), archaea (AOA) and complete ammonia oxidisers (comammox Nitrospira)) responsible for substantial N2O emissions in agricultural soils is unknown, as is their regulation by soil biotic and abiotic factors. In this study, cumulative N2O emissions, nitrification rates, abundance and community structure of nitrifiers were investigated in 16 agricultural soils from major crop production regions of China using microcosm experiments with amended nitrogen (N) supplemented or not with a nitrification inhibitor (nitrapyrin). Key nitrifier groups involved in N2O emissions were identified by comparative analyses of the different treatments, combining sequencing and random forest analyses. Soil cumulative N2O emissions significantly increased with soil pH in all agricultural soils. However, they decreased with soil organic carbon (SOC) in alkaline soils. Nitrapyrin significantly inhibited soil cumulative N2O emissions and AOB growth, with a significant inhibition of the AOB Nitrosospira cluster 3a.2 (D11) abundance. One Nitrosospira multiformis-like OTU phylotype (OTU34), which was classified within the AOB Nitrosospira cluster 3a.2 (D11), had the greatest importance on cumulative N2O emissions and its growth significantly depended on soil pH and SOC contents, with higher growth at high pH and low SOC conditions. Collectively, our results demonstrate that alkaline soils with low SOC contents have high N2O emissions, which were mainly driven by AOB Nitrosospira cluster 3a.2 (D11). Nitrapyrin can efficiently reduce nitrification-related N2O emissions by inhibiting the activity of AOB Nitrosospira cluster 3a.2 (D11). This study advances our understanding of key nitrifiers responsible for high N2O emissions in agricultural soils and their controlling factors, and provides vital knowledge for N2O emission mitigation in agricultural ecosystems.
Collapse
Affiliation(s)
- Na Deng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xiao-Tong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Xiao-Tang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Ju-Pei Shen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hong-Jie Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, 7647, Christchurch, New Zealand
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Jiang C, Wu J, Ye J, Hong Y. High throughput amplicon analysis reveals potential novel ammonia oxidizing prokaryotes in the eutrophic Jiaozhou Bay. MARINE POLLUTION BULLETIN 2024; 200:116046. [PMID: 38246016 DOI: 10.1016/j.marpolbul.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Ammonia-oxidizing prokaryotes (AOPs) are the major contributors of ammonia oxidization with widely distribution. Here we investigated the phylogenetic diversity, community composition, and regulating factors of AOPs in Jiaozhou Bay (JZB) with high-throughput sequencing of amoA gene. Phylogenetic analysis showed most of the OTUs could not be clustered with any known AOPs, indicating there might exist putative novel AOPs. With new developed protocols for AOP community analysis, we confirmed that only 3 OTUs of ammonia-oxidizing archaea (AOA) could be affiliated to known Nitrosopumilaceae and Nitrososphaera, and the other OTUs were identified as novel AOA based on the threshold. All abstained OTUs of ammonia-oxidizing bacteria (AOB) were identified as novel clusters based on the threshold. Further analysis showed the novel AOPs had different distribution characteristics related to environmental factors. The high abundance and widespread distribution of these novel AOPs indicated that they played an important role in ammonia conversion in eutrophic JZB.
Collapse
Affiliation(s)
- Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Sun D, Rozmoš M, Kotianová M, Hršelová H, Jansa J. Arbuscular mycorrhizal fungi suppress ammonia-oxidizing bacteria but not archaea across agricultural soils. Heliyon 2024; 10:e26485. [PMID: 38444950 PMCID: PMC10912043 DOI: 10.1016/j.heliyon.2024.e26485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are supposedly competing with ammonia-oxidizing microorganisms (AO) for soil nitrogen in form of ammonium. Despite a few studies directly addressing AM fungal and AO interactions, mostly in artificial cultivation substrates, it is not yet clear whether AM fungi can effectively suppress AO in field soils containing complex indigenous microbiomes. To fill this knowledge gap, we conducted compartmentalized pot experiments using four pairs of cropland and grassland soils with varying physicochemical properties. To exclude the interference of roots, a fine nylon mesh was used to separate the rhizosphere and mesh bags, with the latter being filled with unsterile field soils. Inoculation of plants with AM fungus Rhizophagus irregularis LPA9 suppressed AO bacteria (AOB) but not archaea (AOA) in the soils, indicating how soil nitrification could be suppressed by AM fungal presence/activity. In addition, in rhizosphere filled with artificial substrate, AM inoculation did suppress both AOB and AOA, implying more complex interactions between roots, AO, and AM fungi. Besides, we also observed that indigenous AM fungi contained in the field soils eventually did colonize the roots of plants behind the root barrier, and that the extent of such colonization was higher if the soil has previously been taken from cropland than from grassland. Despite this, the effect of experimental AM fungal inoculation on suppression of indigenous AOB in the unsterile field soils did not vanish. It seems that studying processes at a finer temporal scale, using larger buffer zones between rhizosphere and mesh bags, and/or detailed characterization of indigenous AM fungal and AO communities would be needed to uncover further details of the biotic interactions between the AM fungi and indigenous soil AO.
Collapse
Affiliation(s)
- Daquan Sun
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Martin Rozmoš
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Michala Kotianová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Hana Hršelová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
7
|
Poghosyan L, Lehtovirta-Morley LE. Investigating microbial and environmental drivers of nitrification in alkaline forest soil. ISME COMMUNICATIONS 2024; 4:ycae093. [PMID: 39132578 PMCID: PMC11310595 DOI: 10.1093/ismeco/ycae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Ammonia oxidation is a key step in the biogeochemical cycling of nitrogen, and soils are important ecosystems for nitrogen flux globally. Approximately 25% of the world's soils are alkaline. While nitrification has been studied more extensively in agricultural alkaline soils, less is known about natural, unfertilized alkaline soils. In this study, microorganisms responsible for ammonia oxidation and several environmental factors (season, temperature, ammonia concentration, and moisture content) known to affect nitrification were studied in an alkaline forest soil with a pH ranging from 8.36 to 8.77. Ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea, and comammox were present, and AOB belonging to genera Nitrosospira and Nitrosomonas, originally comprising <0.01% of the total bacterial community, responded rapidly to ammonia addition to the soil. No significant difference was observed in nitrification rates between seasons, but there was a significant difference between in situ field nitrification rates and rates in laboratory microcosms. Surprisingly, nitrification took place under many of the tested conditions, but there was no detectable increase in the abundance of any recognizable group of ammonia oxidizers. This study raises questions about the role of low-abundance microorganisms in microbial processes and of situations where zero or very low microbial growth coincides with metabolic activity. In addition, this study provides insights into nitrification in unfertilized alkaline soil and supports previous studies, which found that AOB play an important role in alkaline soils supplemented with ammonia, including agricultural ecosystems.
Collapse
Affiliation(s)
- Lianna Poghosyan
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | |
Collapse
|