1
|
Santonicola S, Volgare M, Olivieri F, Cocca M, Colavita G. Natural and Regenerated Cellulosic Microfibers Dominate Anthropogenic Particles Ingested by Commercial Fish Species from the Adriatic Sea. Foods 2025; 14:1237. [PMID: 40238492 PMCID: PMC11988341 DOI: 10.3390/foods14071237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated the occurrence of fibrous microplastics and natural and artificial cellulose microfibers in the gastrointestinal tracts of Mullus barbatus and Merluccius merluccius specimens from the Adriatic Sea (Central Mediterranean), an important hotspot for marine litter accumulation. Red mullet and European hake were chosen due to their roles as bioindicators of marine pollution in the Mediterranean, and their economic relevance as fishery resources. Microfibers were found in 72% of M. barbatus and 68% of M. merluccius, at levels ranging from 1 to 67 particles/individual. Most of the microfibers extracted were textile fibers that were blue (33.6%), clear (26.1%), and black (20.3%) in color, while the length distribution showed the prevalence of microfibers in the size range of 350-950 µm. This visual identification, corroborated by the micro-FTIR analysis of a sub-sample of microfibers, revealed that natural and artificial cellulose microfibers were more common (80%) than fibrous microplastics. The results confirmed that both of these fish species are susceptible to microfiber ingestion and indicated the high availability of natural and artificial cellulosic fibers in the Adriatic Basin. Despite the increased evidence of microfiber pollution in the marine ecosystem, only a limited number of studies examine natural/artificial microfiber contamination and ingestion by marine biota. Therefore, greater attention should be given to this new type of contaminant, considering its implications in terms of environmental health, food security, and food safety.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (S.S.); (G.C.)
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy;
| | - Federico Olivieri
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (S.S.); (G.C.)
| |
Collapse
|
2
|
Santonicola S, Volgare M, Cocca M, Colavita G. Study of fibrous microplastic and natural microfiber levels in branded milk samples from Italy. Ital J Food Saf 2025. [PMID: 40152942 DOI: 10.4081/ijfs.2025.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
As far as we know, there is no evidence regarding the microfiber (MF) occurrence and abundance in branded milk samples from Italy. Therefore, a total of 20 milk samples from 5 brands were collected and analyzed using a digestion step with hydrogen peroxide followed by filtration. Natural and synthetic MFs were classified according to the evaluation of surface morphology (i.e., shape and texture), followed by chemical identification using Fourier transform infrared spectroscopy (FTIR) microspectroscopy. Results revealed the occurrence of MFs in 67.5% of the analyzed samples and showed variability ranging between 1-27 particles/100 mL with an overall average of 3.85 MFs/100 mL. The FTIR analyses confirmed the presence of polyethylene, polyester, acrylic, and cellulosic MFs. According to the literature, the contamination of milk may occur at various stages along the production chain. The blood-milk barrier would prevent MFs from being transferred across the mammary gland into the milk. The highest MF levels found in ultra-high temperature skimmed milk of some brands may indicate the more complex the processing of milk, the more MFs they contain. However, due to the different MF types and polymers, an unambiguous conclusion on MF sources cannot be made. MFs could be shed from the filters used in the milk processing factories and the protective clothing for workers. Therefore, the MF contamination should be properly investigated along the entire supply chain, identifying the sources of contamination and implementing control strategies and mitigation measures.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Pozzuoli (NA).
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II.
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Pozzuoli (NA).
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso.
| |
Collapse
|
3
|
Shao K, Zou R, Zhang Z, Mandemaker LDB, Timbie S, Smith RD, Durkin AM, Dusza HM, Meirer F, Weckhuysen BM, Alderete TL, Vermeulen R, Walker DI. Advancements in Assays for Micro- and Nanoplastic Detection: Paving the Way for Biomonitoring and Exposomics Studies. Annu Rev Pharmacol Toxicol 2025; 65:567-585. [PMID: 39270670 DOI: 10.1146/annurev-pharmtox-030424-112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Although plastic pollution and exposure to plastic-related compounds have received worldwide attention, health risks associated with micro- and nanoplastics (MNPs) are largely unknown. Emerging evidence suggests MNPs are present in human biofluids and tissue, including blood, breast milk, stool, lung tissue, and placenta; however, exposure assessment is limited and the extent of human exposure to MNPs is not well known. While there is a critical need to establish robust and scalable biomonitoring strategies to assess human exposure to MNPs and plastic-related chemicals, over 10,000 chemicals have been linked to plastic manufacturing with no existing standardized approaches to account for even a fraction of these exposures. This review provides an overview of the status of methods for measuring MNPs and associated plastic-related chemicals in humans, with a focus on approaches that could be adapted for population-wide biomonitoring and integration with biological response measures to develop hypotheses on potential health effects of plastic exposures. We also examine the exposure risks associated with the widespread use of chemical additives in plastics. Despite advancements in analytical techniques, there remains a pressing need for standardized measurement protocols and untargeted, high-throughput analysis methods to enable comprehensive MNP biomonitoring to identify key MNP exposures in human populations. This review aims to merge insights into the toxicological effects of MNPs and plastic additives with an evaluation of analytical challenges, advocating for enhanced research methods to fully assess, understand, and mitigate the public health implications of MNPs.
Collapse
Affiliation(s)
- Kuanliang Shao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Runyu Zou
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhuoyue Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sarah Timbie
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Ronald D Smith
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Amanda M Durkin
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roel Vermeulen
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
4
|
Schiano ME, D'Auria LJ, D'Auria R, Seccia S, Rofrano G, Signorelli D, Sansone D, Caprio E, Albrizio S, Cocca M. Microplastic contamination in the agri-food chain: The case of honeybees and beehive products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174698. [PMID: 38997016 DOI: 10.1016/j.scitotenv.2024.174698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Microplastics, MPs, plastic fragments with a dimension lower than 5 mm, and microfibers, MFs, synthetic and natural/artificial fibrous fragments with a diameter lower than 50 μm, are ubiquitous pollutants identified in different environmental compartments. In this work the occurrence of MPs and MFs on honeybees, Apis mellifera, and beehive products was evaluated, using Fourier transform infrared microspectroscopy, confirming that MPs and MFs are widely present as air contaminants in all the apiary's areas (high and low urbanized areas) in Southern Italy. Results indicated that independently from the site, both honeybees and honey samples, are contaminated by MFs with non-natural color. The majority of MFs were of natural origin followed by artificial MFs and synthetic MFs. Moreover, the chemical composition of MFs isolated from honeybees reflect that used in synthetic fabrics, leading to the hypothesis that they are released from textile to air where are captured by bees. Results highlight that MFs represent a class of ubiquitous airborne anthropogenic pollutants. The identification of polytetrafluoroethylene, PTFE, MPs in honeybees confirm the recent findings that PTFE MPs are diffuse soil and air contaminants while the identification of polyethylene, PE, based MPs in honey samples, from low density urban sites, could be correlated to the large use of PE in agriculture. In the honey samples, also polycaprolactone, PCL, MPs were identified, mainly in high density urban sites, confirming that biodegradable materials could be further pollutants in the environments. The results indicate that honeybees are contaminated by MPs and MFs during their flights or picking up from the hive components, flowers, from other nest mates, from the clothes of the beekeeper, among others and some of them could be transferred to honey samples that could be also affected by soil contamination.
Collapse
Affiliation(s)
- Marica Erminia Schiano
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Jacopo D'Auria
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Roberta D'Auria
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Serenella Seccia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Rofrano
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy.
| | - Daniel Signorelli
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Donato Sansone
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Emilio Caprio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università, 100 Portici, 80055 Naples, Italy
| | - Stefania Albrizio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Interuniversity Consortium INBB, Viale Medaglie d'Oro 305, 00136 Rome, Italy.
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
5
|
Santonicola S, Volgare M, Rossi F, Castaldo R, Cocca M, Colavita G. Detection of fibrous microplastics and natural microfibers in fish species (Engraulis encrasicolus, Mullus barbatus and Merluccius merluccius) for human consumption from the Tyrrhenian sea. CHEMOSPHERE 2024; 363:142778. [PMID: 38971436 DOI: 10.1016/j.chemosphere.2024.142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The occurrence of natural/artificial and synthetic microfibers was assessed in three commercial fish species (Engraulis encrasicolus, Mullus barbatus, Merluccius merluccius) from the Tyrrhenian Sea sold for human consumption. The gastrointestinal tracts of n. 150 samples were analyzed, the isolated microfibers were classified applying a morphological approach, based on the analysis of their morphological features, coupled with the identification of the chemical composition of a subsample of microfibers. All the species contained microfibers at levels ranging from 0 to 49 items/individual and the number of ingested microfibers significantly differed between pelagic and demersal fishes. The evaluation of fiber morphologies highlighted that natural/artificial microfibers were the most numerous among the isolated microfibers, while the dominant colors were blue, black, and clear in all the species. Chemical characterization confirmed the morphological identification and indicated cellulose and polyester as the most common polymer types. Considering the analytical issues that may affect the evaluation of microfiber pollution, the results pointed out the importance of an accurate morphological approach that allows the distinction between different fiber types, before the spectroscopic analyses. Moreover, the implementation of fast and accessible methods to identify microfibers in fish species intended for human consumption will be beneficial also to make an adequate risk assessment to consumer health.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125, Naples, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Diagnostic Laboratory, 86100, Campobasso, Italy
| | - Rachele Castaldo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy
| |
Collapse
|
6
|
Ciocan C, Annels C, Fitzpatrick M, Couceiro F, Steyl I, Bray S. Glass reinforced plastic (GRP) boats and the impact on coastal environment - Evidence of fibreglass ingestion by marine bivalves from natural populations. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134619. [PMID: 38754228 DOI: 10.1016/j.jhazmat.2024.134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Classified as marine debris, man made materials are polluting the world's oceans. Recently, glass reinforced plastic (GRP) has been shown to degrade and contaminate the coasts. In this pioneering study, fibreglass particles have been detected in the soft parts of oysters and mussels collected from natural populations, in front of an active boatyard. The presence of particulate glass, with concentrations up to 11,220 particles/kg ww in Ostrea edulis and 2740 particles/kg ww in Mytilus edulis, was confirmed by micro Raman spectroscopy. The results showed higher accumulation during the winter months, when boat maintenance activities are peaking and, through repair work, the release of glass fibres in the environment is more likely. Bivalves are considered high risk species due to their sessile nature and extensive filter feeding behaviour. The microparticle inclusion may contribute to adverse impacts on physiological processes and eventually to a decline in the overall health and subsequent death of the animal. The high costs involved in the proper GRP disposal and the lack of recycling facilities worldwide lead to boat abandonement and further contamination of the coasts. For the first time this study presents the extensive fibreglass contamination of natural bivalve populations, in a popular South England sailing harbour, designated a biological and geological site of specific scientific interest (SSRI).
Collapse
Affiliation(s)
- Corina Ciocan
- University of Brighton, School of Applied Sciences, Moulsecoomb Campus, Brighton BN1 4GJ, UK.
| | - Claude Annels
- University of Brighton, School of Applied Sciences, Moulsecoomb Campus, Brighton BN1 4GJ, UK
| | - Megan Fitzpatrick
- University of Brighton, School of Applied Sciences, Moulsecoomb Campus, Brighton BN1 4GJ, UK
| | - Fay Couceiro
- University of Portsmouth, School of Civil Engineering and Surveying, Portsmouth PO1 2UP, UK
| | - Ilse Steyl
- Aqass Limited, Netley Abbey, Southampton, UK, SO31 5QA
| | - Simon Bray
- School of Biological Sciences, University of Southampton, Life Sciences Building (Building 85), Highfield Campus, Southampton SO17 1BJ, UK
| |
Collapse
|
7
|
Santonicola S, Volgare M, Schiano ME, Cocca M, Colavita G. A study on textile microfiber contamination in the gastrointestinal tracts of Merluccius merluccius samples from the Tyrrhenian Sea. Ital J Food Saf 2024; 13:12216. [PMID: 38807742 PMCID: PMC11128977 DOI: 10.4081/ijfs.2024.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 05/30/2024] Open
Abstract
The increased demand and consumption of synthetic textiles have contributed to microplastic pollution in the form of microfibers. These particles are widely spread in the aquatic environment, leading to the exposure of marine biota, including edible species. The current study aimed to assess the extent of microfiber contamination in a commercially relevant fish species, Merluccius merluccius, which is considered a small-scale bioindicator for the monitoring of plastic ingestion in the Mediterranean coastal environment. The frequency of ingestion, abundance, and composition of textile microfibers isolated from the fish gut were characterized. Results showed the occurrence of microfibers in 75% of the samples, with a mean number of 10.6 microfibers/individual, of which 70% were classified as natural microfibers. The spectroscopic analyses confirmed both the visual identification of microfibers and the prevalence of cellulosic fibers. The obtained findings provided evidence of both natural/artificial and synthetic microfiber exposure in an important commercial fish species that, considering the consumption of small individuals without being eviscerated, may be a potential route of microfiber exposure in humans. Monitoring programs for fishery products from markets are needed to assess contamination levels and human health risks. In addition, measures to control microfiber pollution need to occur at multiple levels, from textile industries to international governments.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences, University of Molise, Campobasso
- Institute of Polymer, Composites and Biomaterials, National Research Council of Italy, Pozzuoli
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II
| | - Marica Erminia Schiano
- Institute of Polymer, Composites and Biomaterials, National Research Council of Italy, Pozzuoli
- Department of Pharmacy, University of Naples Federico II, Italy
| | - Mariacristina Cocca
- Institute of Polymer, Composites and Biomaterials, National Research Council of Italy, Pozzuoli
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences, University of Molise, Campobasso
| |
Collapse
|
8
|
Pizzurro F, Nerone E, Ancora M, Di Domenico M, Mincarelli LF, Cammà C, Salini R, Di Renzo L, Di Giacinto F, Corbau C, Bokan I, Ferri N, Recchi S. Exposure of Mytilus galloprovincialis to Microplastics: Accumulation, Depuration and Evaluation of the Expression Levels of a Selection of Molecular Biomarkers. Animals (Basel) 2023; 14:4. [PMID: 38200735 PMCID: PMC10778302 DOI: 10.3390/ani14010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Microplastic contamination is a growing marine environmental issue with possible consequences for seafood safety. Filter feeders are the target species for microplastic (MPs) pollution because they filter large quantities of seawater to feed. In the present study, an experimental contamination of Mytilus galloprovincialis was conducted using a mixture of the main types of MPs usually present in the seawater column (53% filaments, 30% fragments, 3% granules) in order to test the purification process as a potential method for removing these contaminants from bivalves intended for human consumption. A set of molecular biomarkers was also evaluated in order to detect any variations in the expression levels of some genes associated with biotransformation and detoxification, DNA repair, cellular response, and the immune system. Our results demonstrate that: (a) the purification process can significantly reduce MP contamination in M. galloprovincialis; (b) a differential expression level has been observed between mussels tested and in particular most of the differences were found in the gills, thus defining it as the target organ for the use of these biomarkers. Therefore, this study further suggests the potential use of molecular biomarkers as an innovative method, encouraging their use in next-generation marine monitoring programs.
Collapse
Affiliation(s)
- Federica Pizzurro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Eliana Nerone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Luana Fiorella Mincarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Federica Di Giacinto
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Corinne Corbau
- Dipartimento di Scienze dell’Ambiente e della Prevenzione, Università di Ferrara, 44122 Ferrara, Italy;
| | - Itana Bokan
- Teaching Institute of Public Health (TIPH), 51000 Rijeka, Croatia;
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Sara Recchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| |
Collapse
|
9
|
Wang M, Yang J, Zheng S, Jia L, Yong ZY, Yong EL, See HH, Li J, Lv Y, Fei X, Fang M. Unveiling the Microfiber Release Footprint: Guiding Control Strategies in the Textile Production Industry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21038-21049. [PMID: 38064758 DOI: 10.1021/acs.est.3c06210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Microplastic fibers from textiles have been known to significantly contribute to marine microplastic pollution. However, little is known about the microfiber formation and discharge during textile production. In this study, we have quantified microfiber emissions from one large and representative textile factory during different stages, spanning seven different materials, including cotton, polyester, and blended fabrics, to further guide control strategies. Wet-processing steps released up to 25 times more microfibers than home laundering, with dyeing contributing to 95.0% of the total emissions. Microfiber release could be reduced by using white coloring, a lower dyeing temperature, and a shorter dyeing duration. Thinner, denser yarns increased microfiber pollution, whereas using tightly twisted fibers mitigated release. Globally, wet textile processing potentially produced 6.4 kt of microfibers in 2020, with China, India, and the US as significant contributors. The study underlined the environmental impact of textile production and the need for mitigation strategies, particularly in dyeing processes and fiber choice. In addition, no significant difference was observed between the virgin polyesters and the used ones. Replacing virgin fibers with recycled fibers in polyester fabrics, due to their increasing consumption, might offer another potential solution. The findings highlighted the substantial impact of textile production on microfiber released into the environment, and optimization of material selection, knitting technologies, production processing, and recycled materials could be effective mitigation strategies.
Collapse
Affiliation(s)
- Mengjing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Siwen Zheng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Linran Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhi Yuan Yong
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Malaysia
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Malaysia
| | - Ee Ling Yong
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Malaysia
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Malaysia
| | - Hong Heng See
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Malaysia
| | - Jiuwei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yunbo Lv
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Eco-Chongming, Shanghai 200241, China
| |
Collapse
|
10
|
Rathinamoorthy R, Raja Balasaraswathi S. Impact of sewing on microfiber release from polyester fabric during laundry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166247. [PMID: 37574077 DOI: 10.1016/j.scitotenv.2023.166247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Microfibers released from textile materials are receiving greater attention due to their severe adverse effects on the environment. Although mitigation strategies have been developed for laundering, researchers uphold that it is crucial to start mitigating at the source. In that aspect, this research aims to analyze the cutting and sewing methods of knitted fabrics and their impact on the microfiber release of garments during laundry. The results of the study have confirmed that cutting and sewing methods have a significant impact on the microfiber release of a garment. The analysis of different cutting methods showed that laser and ultrasonic cutting methods reduce the microfiber release up to 20 times compared to the conventional scissor-cut edges. While comparing the different stitch types, the overlock stitch type showed reduced shedding than the other stitch types (flatlock stitch and single needle lockstitch). Our results also showed that the use of more needles increases the microfiber emission among different stitch variations of the same stitch type. For instance, a 45.27 % increase in microfiber emission was reported with the 4-thread overlock stitch (2 needles) than with the 3-thread stitch (1 needle). Regarding seam type, the proposed edge finishing seam (EFb) was effective in reducing 93 % of microfiber release as the edges are completely covered. When the effect of stitch density is considered, in the case of single needle lockstitch and flatlock stitch, the microfiber release is reduced with increased stitch density. However, a different trend was noted in the overlock stitch, which needed detailed exploration in the future. The results confirmed that a proper selection of stitch, stitch density, and seam type would reduce the microfiber release from a garment by up to 64.6 %.
Collapse
Affiliation(s)
- R Rathinamoorthy
- Department of Fashion Technology, PSG College of Technology, Coimbatore 641004, India.
| | - S Raja Balasaraswathi
- Department of Fashion Technology, National Institute of Fashion Technology, Bengaluru 560102, India
| |
Collapse
|
11
|
Santonicola S, Volgare M, Cocca M, Dorigato G, Giaccone V, Colavita G. Impact of Fibrous Microplastic Pollution on Commercial Seafood and Consumer Health: A Review. Animals (Basel) 2023; 13:1736. [PMID: 37889673 PMCID: PMC10252135 DOI: 10.3390/ani13111736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/15/2023] Open
Abstract
The omnipresence of microfibers in marine environments has raised concerns about their availability to aquatic biota, including commercial fish species. Due to their tiny size and wide distribution, microfibers may be ingested by wild-captured pelagic or benthic fish and farmed species. Humans are exposed via seafood consumption. Despite the fact that research on the impact of microfibers on marine biota is increasing, knowledge on their role in food security and safety is limited. The present review aims to examine the current knowledge about microfiber contamination in commercially relevant fish species, their impact on the marine food chain, and their probable threat to consumer health. The available information suggests that among the marine biota, edible species are also contaminated, but there is an urgent need to standardize data collection methods to assess the extent of microfiber occurrence in seafood. In this context, natural microfibers should also be investigated. A multidisciplinary approach to the microfiber issue that recognizes the interrelationship and connection of environmental health with that of animals and humans should be used, leading to the application of strategies to reduce microfiber pollution through the control of the sources and the development of remediation technologies.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy;
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | | | - Valerio Giaccone
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
12
|
Santonicola S, Volgare M, Di Pace E, Mercogliano R, Cocca M, Raimo G, Colavita G. Research and characterization of fibrous microplastics and natural microfibers in pelagic and benthic fish species of commercial interest. Ital J Food Saf 2023; 12:11032. [PMID: 37064521 PMCID: PMC10102967 DOI: 10.4081/ijfs.2023.11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 03/10/2023] Open
Abstract
The ingestion of synthetic microfibers, the most prevalent type of microplastics in marine environments, and natural fibers was assessed in Engraulis engrasicolus and Mullus barbatus, two commercially important fish species in the Mediterranean Sea. Microfibers were isolated from the fish gastrointestinal tract using a 10% potassium hydroxide solution. For the microfiber characterization, the evaluation of specific morphological features using a light microscope, coupled with the Fourier-transform infrared (FTIR) analysis of a subsample of isolated particles, was applied. The preliminary results showed the occurrence of microfibers in 53 and 60% of European anchovy and Red mullet, respectively. A mean of 6.9 microfibers/individual was detected in anchovies, while on average Red mullet samples contained 9.2 microfibers/individual. The most common colors of fibers in both species were black, blue, and transparent. Visual characterization of fibers allowed the classification of 40% of the items as synthetic microfibers. FTIR spectroscopy confirmed the visual classification by fiber morphology. Microfibers were made of different typologies of polymers, represented by cellulose, cotton, and polyester. These findings confirm as the wide distribution of fibrous microplastics, and natural microfibers may impact both pelagic and deep-sea trophic webs. Despite the presence of microfibers in fish species poses a potential risk to human health, the literature is scarce regarding studies on the uptake by commercial marine fish mostly due to methodological issues. The visual characterization, corroborated by spectroscopic techniques, may be useful to differentiate synthetic and natural fibers, representing a fast and easy method to assess fibrous microplastic pollution in commercially important fish species.
Collapse
|