1
|
Fu Y, Yang Q, Xu N, Zhang X. MiRNA affects the advancement of breast cancer by modulating the immune system's response. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167759. [PMID: 40037267 DOI: 10.1016/j.bbadis.2025.167759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Breast cancer (BC), which is the most common tumor in women, has greatly endangered women's lives and health. Currently, patients with BC receive comprehensive treatments, including surgery, chemotherapy, radiotherapy, endocrine therapy, and targeted therapy. According to the latest research, the development of BC is closely related to the inflammatory immune response, and the immunogenicity of BC has steadily been recognized. As such, immunotherapy is one of the promising and anticipated forms of treatment for BC. The potential values of miRNA in the diagnosis and prognosis of BC have been established, and aberrant expression of associated miRNA can either facilitate or inhibit progression of BC. In the tumor immune microenvironment (TME), miRNAs are considered to be an essential molecular mechanism by which tumor cells interact with immunocytes and immunologic factors. Aberrant expression of miRNAs results in reprogramming of tumor cells actively, which may suppress the generation and activation of immunocytes and immunologic factors, avoid tumor cells apoptosis, and ultimately result in uncontrolled proliferation and deterioration. Therefore, through activating and regulating the immunocytes related to tumors and associated immunologic factors, miRNA can contribute to the advancement of BC. In this review, we assessed the function of miRNA and associated immune system components in regulating the advancement of BC, as well as the potential and viability of using miRNA in immunotherapy for BC.
Collapse
Affiliation(s)
- Yeqin Fu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Qiuhui Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, China
| | - Ning Xu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xiping Zhang
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Ibáñez-Cabellos JS, Sandoval J, Pallardó FV, García-Giménez JL, Mena-Molla S. A Sex-Specific Minimal CpG-Based Model for Biological Aging Using ELOVL2 Methylation Analysis. Int J Mol Sci 2025; 26:3392. [PMID: 40244262 PMCID: PMC11989821 DOI: 10.3390/ijms26073392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Significant deviations between chronological and biological age can signal the early risk of chronic diseases, driving the need for tools that accurately determine biological age. While DNA methylation-based clocks have demonstrated strong predictive power for biological aging determination, their clinical application is limited by several barriers including high costs, the need to analyze hundreds of methylation sites using sophisticated platforms and the lack of standardized measurement tools and protocols. In this study, we developed a multivariate linear model using the analysis of eight CpGs within the promoter region of the very long chain fatty acid elongase 2 gene (ELOVL2). The model generated predicts biological age with a mean absolute error (MAE) of 5.04, providing a simplified, cost-effective alternative to more complex methylation-based clocks. Additionally, we identified sex-specific biological clocks, achieving MAEs of 4.37 for males and 5.38 for females, highlighting sex-related molecular differences in the methylation of this gene during aging. Our minimal CpG-based clock offers a practical solution for estimating biological age, with potential applications in clinical practice for assessing age-related disease risks and providing personalized healthcare interventions.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain;
- EpiDisease S.L. (Spin-Off from the CIBER-ISCIII), Parc Científic de la Universitat de Valencia, 46980 Paterna, Spain
| | - Juan Sandoval
- Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain;
| | - Federico V. Pallardó
- Department of Physiology, Medicine and Dentistry School, University of Valencia, 46010 Valencia, Spain; (F.V.P.); (J.L.G.-G.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Medicine and Dentistry School, University of Valencia, 46010 Valencia, Spain; (F.V.P.); (J.L.G.-G.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
3
|
Rahman MS, Ghorai S, Panda K, Santiago MJ, Aggarwal S, Wang T, Rahman I, Chinnapaiyan S, Unwalla HJ. Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease. Noncoding RNA Res 2025; 11:22-37. [PMID: 39736851 PMCID: PMC11683234 DOI: 10.1016/j.ncrna.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 01/01/2025] Open
Abstract
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers. Notably, miR-145-5p plays a vital role in the pathophysiology underlying HIV and chronic obstructive pulmonary diseases associated with cigarette smoke. This miRNA is abundant in biofluids and shows potential as a biomarker for the diagnosis and prognosis of several infectious diseases, such as hepatitis B, tuberculosis, and influenza. Additionally, numerous studies have indicated that other non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate miR-145-5p. Given the significance of miR-145-5p, a comprehensive overview focusing on its roles in health and disease is essential. This review discusses the dual role of miR-145-5p as a protagonist and antagonist in important human diseases, with particular emphasis on disorders of the respiratory, digestive, nervous, reproductive, endocrine, and urinary systems.
Collapse
Affiliation(s)
- Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ting Wang
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
4
|
Zhang Y, Zhang M, Song H, Dai Q, Liu C. Tumor Microenvironment-Responsive Polymer-Based RNA Delivery Systems for Cancer Treatment. SMALL METHODS 2025; 9:e2400278. [PMID: 38803312 DOI: 10.1002/smtd.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleic acid (RNA) therapeutics offer a broad prospect in cancer treatment. However, their successful application requires overcoming various physiological barriers to effectively deliver RNAs to the target sites. Currently, a number of RNA delivery systems based on polymeric nanoparticles are developed to overcome these barriers in RNA delivery. This work provides an overview of the existing RNA therapeutics for cancer gene therapy, and particularly summarizes those that are entering the clinical phase. This work then discusses the core features and latest research developments of tumor microenvironment-responsive polymer-based RNA delivery carriers which are designed based on the pathological characteristics of the tumor microenvironment. Finally, this work also proposes opportunities for the transformation of RNA therapies into cancer immunotherapy methods in clinical applications.
Collapse
Affiliation(s)
- Yahan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Peng X, Zheng J, Liu T, Zhou Z, Song C, Zhang D, Zhang X, Huang Y. DNA Methylation-Based Diagnosis and Treatment of Breast Cancer. Curr Cancer Drug Targets 2025; 25:26-37. [PMID: 38441008 DOI: 10.2174/0115680096278978240204162353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/06/2024]
Abstract
DNA methylation is a key epigenetic modifier involved in tumor formation, invasion, and metastasis. The development of breast cancer is a complex process, and many studies have now confirmed the involvement of DNA methylation in breast cancer. Moreover, the number of genes identified as aberrantly methylated in breast cancer is rapidly increasing, and the accumulation of epigenetic alterations becomes a chronic factor in the development of breast cancer. The combined effects of external environmental factors and the internal tumor microenvironment promote epigenetic alterations that drive tumorigenesis. This article focuses on the relevance of DNA methylation to breast cancer, describing the role of detecting DNA methylation in the early diagnosis, prediction, progression, metastasis, treatment, and prognosis of breast cancer, as well as recent advances. The reversibility of DNA methylation is utilized to target specific methylation aberrant promoters as well as related enzymes, from early prevention to late targeted therapy, to understand the journey of DNA methylation in breast cancer with a more comprehensive perspective. Meanwhile, methylation inhibitors in combination with other therapies have a wide range of prospects, providing hope to drug-resistant breast cancer patients.
Collapse
Affiliation(s)
- Xintong Peng
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Jingfan Zheng
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Tianzi Liu
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Ziwen Zhou
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Chen Song
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Danyan Zhang
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Xinlong Zhang
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Yan Huang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Toprak A. Predicting human miRNA disease association with minimize matrix nuclear norm. Sci Rep 2024; 14:30815. [PMID: 39730483 DOI: 10.1038/s41598-024-81213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
microRNAs (miRNAs) are non-coding RNA molecules that influence the development and progression of many diseases. Research have documented that miRNAs have a significant role in the prevention, diagnosis, and treatment of complex human diseases. Recently, scientists have devoted extensive resources to attempting to find the connections between miRNAs and diseases. Since the experimental methods used to discover that new miRNA-disease associations are time-consuming and expensive, many computational methods have been developed. In this research, a novel computational method based on matrix decomposition was proposed to predict new associations between miRNAs and diseases. Furthermore, the nuclear norm minimization method was employed to acquire breast cancer-associated miRNAs. We then evaluated the effectiveness of our method by utilizing two different cross-validation techniques and the results were compared to seven different methods. Moreover, a case study on breast cancer further validated our technique, confirming its predictive accuracy. These experimental results demonstrate that our method is a reliable computational model for uncovering potential miRNA-disease relationships.
Collapse
Affiliation(s)
- Ahmet Toprak
- Department of Electricity and Energy, Selcuk University, Konya, Turkey.
| |
Collapse
|
7
|
Chen X, Li D, Su Q, Ling X, Ding S, Xu R, Liu Z, Qin Y, Zhang J, Yang Z, Kang X, Qi Y, Wu H. MicroRNA-145-5p inhibits the tumorigenesis of breast cancer through SENP2-regulated ubiquitination of ERK2. Cell Mol Life Sci 2024; 81:461. [PMID: 39578257 PMCID: PMC11584840 DOI: 10.1007/s00018-024-05505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Breast carcinoma exhibits the highest incidence among various cancers and is the foremost cause of mortality in women. Increasing evidence shows that SUMOylation of proteins plays a critical role in the progression of breast cancer; however, the role of SENP2 and its molecular mechanism in breast cancer remain underexplored. Here, we discerned that SENP2 promoted the tumorigenesis of breast cancer both in vitro and in vivo. Furthermore, we identified that ERK2 was SUMOylated and that SENP2 played a role by deconjugating ERK2 SUMOylation in breast cancer. SUMOylation of ERK2 promoted its ubiquitin-proteasomal degradation, thus inhibiting the epithelial-to-mesenchymal transition in breast cancer cells. Furthermore, microRNA-145-5p (miR-145-5p) has emerged as a scarce commodity in breast cancer and binds to the 3'-untranslated region of SENP2 mRNA to govern the regulatory dynamics of SENP2 expression. Finally, miR-145-5p inhibits SENP2 transcription, enhances ERK2 SUMOylation, and ultimately suppresses the progression of breast cancer. These revelations suggest evolving ideas for the miR-145-5p-SENP2 axis in therapeutic intervention, thus heralding transformative prospects for the clinical management of breast cancer.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siyu Ding
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoxia Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jinping Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Cánovas-Cervera I, Nacher-Sendra E, Suay G, Lahoz A, García-Giménez JL, Mena-Mollá S. Role of miRNAs as epigenetic regulators of immune checkpoints in lung cancer immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:109-139. [PMID: 39864893 DOI: 10.1016/bs.ircmb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The advent of immunotherapy in cancer has provided new avenues in the treatment of many malignancies at various stages. Specifically, immune checkpoint inhibitors (ICIs) have transformed the field of lung cancer treatment. However, since some tumors can evade the immune system, not all patients respond properly. Recent research has provided evidence showing how microRNAs (miRNAs) are involved in regulating many immune checkpoints. MiRNAs have demonstrated their ability to modulate immune evasion of tumor cells. Currently, reliable markers are being sought to predict the efficacy of immunotherapy in these types of cancers. Therefore, the association of serum miRNAs and the response of ICIs in lung cancer is under study. Many miRNA molecules and their corresponding target genes have been identified in the regulation of chemoresistance. Therefore, elucidating how these miRNAs control the function of immune checkpoints, as well as the effectiveness of therapies based on ICIs set the basis for the development of new biomarkers to predict treatment response to ICIs. This chapter delves into the molecular role of miRNAs interacting with ICs, such as PD-1 and PD-L1, and the clinical utility of miRNAs, such as miR-16, miR-146a, and miR-335, in predicting treatment response to ICI-based therapy in lung cancer. The aim is to provide a deep insight of the current landscape, serving as a cornerstone for further research.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Guillermo Suay
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute-Hospital La Fe, Valencia, Spain; Analytical Unit, Health Research Institute-Hospital La Fe, Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.
| | - Salvador Mena-Mollá
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
9
|
Banerjee R, Maitra I, Bhattacharya T, Banerjee M, Ramanathan G, Rayala SK, Venkatraman G, Rajeswari D. Next-generation biomarkers for prognostic and potential therapeutic enhancement in Triple negative breast cancer. Crit Rev Oncol Hematol 2024; 201:104417. [PMID: 38901639 DOI: 10.1016/j.critrevonc.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.
Collapse
Affiliation(s)
- Risav Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Indrajit Maitra
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Trisha Bhattacharya
- Department of Biotechnology, Indian Academy Degree College, Autonomous, Hennur cross, Kalyan Nagar, Bengaluru, Karnataka 560043, India
| | - Manosi Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Ganesh Venkatraman
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Devi Rajeswari
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
10
|
Soleimani M, Harooni A, Erfani N, Khan AR, Saba T, Bahaj SA. Classification of cancer types based on microRNA expression using a hybrid radial basis function and particle swarm optimization algorithm. Microsc Res Tech 2024; 87:1052-1062. [PMID: 38230557 DOI: 10.1002/jemt.24492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024]
Abstract
The diagnosis and treatment of cancer is one of the most challenging aspects of the medical profession, despite advances in disease diagnosis. MicroRNAs are small noncoding RNA molecules involved in regulating gene expression and are associated with several cancer types. Therefore, the analysis of microRNA data has become one of the most important areas of cancer research in recent years. This paper presents an improved method for cancer-type classification based on microRNA expression data using a hybrid radial basis function (RBF) and particle swarm optimization (PSO) algorithm. Two datasets containing microRNA information were used, and preprocessing and normalization operations were performed on the raw data. Feature selection was carried out by using the PSO algorithm, which can identify the most relevant and informative features in the data along with helping to prioritize them. Using a PSO algorithm for feature selection is an effective approach to microRNA analysis. This enhances the accuracy and reliability of cancer-type classifications based on microRNA expression data. In the proposed method, we, respectively, achieved an accuracy of 0.95% and 0.91% on both datasets, with an average of 0.93%, using an improved RBF neural network classifier. These results demonstrate that the proposed method outperforms previous works. RESEARCH HIGHLIGHTS: To enhance the accuracy of cancer-type classifications based on microRNA expression data. We present a minimal feature selection method using particle swarm optimization to reduce computational load & radial basis function to improve accuracy.
Collapse
Affiliation(s)
- Masoumeh Soleimani
- Department of Mathematics and Statistical Sciences, Clemson University, Clemson, South Carolina, USA
| | - Aryan Harooni
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Nasim Erfani
- Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran
| | - Amjad Rehman Khan
- Artificial Intelligence & Data Analytics Lab CCIS Prince Sultan University, Riyadh, Saudi Arabia
| | - Tanzila Saba
- Artificial Intelligence & Data Analytics Lab CCIS Prince Sultan University, Riyadh, Saudi Arabia
| | - Saeed Ali Bahaj
- MIS Department College of Business Administration, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
11
|
Yousefi A, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. MicroRNA-561-3p indirectly regulates the PD-L1 expression by targeting ZEB1, HIF1A, and MYC genes in breast cancer. Sci Rep 2024; 14:5845. [PMID: 38462658 PMCID: PMC10925600 DOI: 10.1038/s41598-024-56511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Atena Yousefi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
12
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Zhu H, Xu Y, Xia J, Guo X, Fang Y, Fan J, Li F, Wu J, Zheng G, Liu Y. Identification and analysis of methylation signature genes and association with immune infiltration in pediatric acute myeloid leukemia. J Cancer Res Clin Oncol 2023; 149:14965-14982. [PMID: 37606761 DOI: 10.1007/s00432-023-05284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common leukemia with low cure rate and poor prognosis among pediatric patients. The regulation of AML immune microenvironment and methylation remains to be explored. Pediatric and adult AML patients differ significantly in epigenetic factors, and the efficiency of treatment modalities varies between the two groups of patients. METHODS We collected mRNA, miRNA and DNA methylation data from pediatric AML patients across multiple databases. Differentially expression genes were identified, and a gene-miRNA regulatory network was constructed. Prognostic risk models were established by integrating LASSO and Cox regression, and a nomogram was generated. Based on this model, we investigated tumor-infiltrating immune cells and cell communication, analyzing the biological functions and pathways associated with prognostic factors. Furthermore, the relationships between all prognostic factors and gene modules were explored, and the impact of these factors on treatment modalities was determined. RESULTS We developed an efficient prognostic risk model and identified HOXA9, SORT1, SH3BP5, mir-224 and mir-335 as biomarkers. We validated these findings in an external dataset and observed a correlation between age and risk in pediatric patients. AML samples with lower risk scores have a better prognosis and higher expression of immune-upregulated biomarkers, and have lower immune scores. Furthermore, we detected discrepancies in immune cell infiltration and interactions between high- and low-risk group samples, which affected the efficacy of immunotherapy. We evaluated all prognostic factors and predicted the effect of immunotherapy and medicine. CONCLUSION This study comprehensively investigated the role of methylation signature genes in pediatric AML at the level of genomes and transcriptomes. The research aims to enhance the risk stratification, prognosis evaluation and assessment of treatment effectiveness of AML patients. This study also highlight the uniqueness of pediatric AML and foster the development of new immunotherapy and targeted therapy strategies.
Collapse
Affiliation(s)
- Huawei Zhu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yanbo Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jun Xia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xu Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yujie Fang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jingzhi Fan
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Fangjun Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jinhong Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Guoliang Zheng
- Liaoning Cancer Hospital, China Medical University, Shenyang, 110042, China.
| | - Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
14
|
Lai Y, Liu J, Hu X, Zeng X, Gao P. Modifications of The Human Liver Cancer Cells through microRNA-145-Mediated Targeting of CDCA3. CELL JOURNAL 2023; 25:546-553. [PMID: 37641416 PMCID: PMC10542210 DOI: 10.22074/cellj.2023.1995666.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Owing to the lethality of liver cancer, it is considered as one of the devastating types of cancers across the globe. Consistently, the study was designed to elucidate the role and to explore the therapeutic implications of miR-145 in human liver cancer. MATERIALS & METHODS In the current experimental study, gene expression was determined by RT-PCR analysis. Transfection of cancer cells was carried out using Lipofectamine 2000. The cell proliferation of liver cancer cells was estimated by MTT assay. Clonogenic assay was performed for analysis of colony forming potential of cancer cells. Flow cytometry was done to analyze the cell cycle phase distribution of cancer cells. Transwell chamber assay was performed to assess the motility of cancer cells. Western blotting was done to estimate the expression levels of proteins. Dual luciferase assay was performed for interaction analysis of miR-145 with CDCA3. RESULT The miR-145 expression was found to be downregulated in liver cancer cells. The transfection mediated overexpression of miR-145 inhibited the cancer cell proliferation and when miR-145 inhibitor was transfected, cancer cells showed higher proliferation rates. Enrichment of miR-145 levels led to cell cycle arrest at G2/M phase by inhibiting cyclin B1. miR-145 also restricted the migration and invasion of cancer cells. CDCA3 was shown to be the intracellular target of miR-145 and it was found that the inhibitory effects of miR-145 were modulated through CDCA3, intracellularly. CONCLUSION The current study clearly revealed that there is a need to investigate the regulatory role of different molecular entities like microRNAs in cancer development to better understand mechanics behind this pathogenesis and design more effective combating strategies against cancer.
Collapse
Affiliation(s)
- Yongqiang Lai
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Junhao Liu
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xiao Hu
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xiancheng Zeng
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Peng Gao
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Hajibabaei S, Nafissi N, Azimi Y, Mahdian R, Rahimi-Jamnani F, Valizadeh V, Rafiee MH, Azizi M. Targeting long non-coding RNA MALAT1 reverses cancerous phenotypes of breast cancer cells through microRNA-561-3p/TOP2A axis. Sci Rep 2023; 13:8652. [PMID: 37244966 DOI: 10.1038/s41598-023-35639-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
Non-coding RNAs, including Inc-RNA and miRNA, have been reported to regulate gene expression and are associated with cancer progression. MicroRNA-561-3p (miR-561-3p), as a tumor suppressor, has been reported to play a role in preventing cancer cell progression, and MALAT1 (Lnc-RNA) have also been demonstrated to promote malignancy in various cancers, such as breast cancer (BC). In this study, we aimed to determine the correlation between miR-561-3p and MALAT1 and their roles in breast cancer progression. The expression of MALAT1, mir-561-3p, and topoisomerase alpha 2 (TOP2A) as a target of miR-561-3p was determined in BC clinical samples and cell lines via qRT-PCR. The binding site between MALAT1, miR-561-3p, and TOP2A was investigated by performing the dual luciferase reporter assay. MALAT1 was knocked down by siRNA, and cell proliferation, apoptotic assays, and cell cycle arrest were evaluated. MALAT1 and TOP2A were significantly upregulated, while mir-561-3p expression was downregulated in BC samples and cell lines. MALAT1 knockdown significantly increased miR-561-3p expression, which was meaningfully inverted by co-transfection with the miR 561-3p inhibitor. Furthermore, the knockdown of MALAT1 by siRNA inhibited proliferation, induced apoptosis, and arrested the cell cycle at the G1 phase in BC cells. Notably, the mechanistic investigation revealed that MALAT1 predominantly acted as a competing endogenous RNA in BC by regulating the miR-561-3p/TOP2A axis. Based on our results, MALAT1 upregulation in BC may function as a tumor promoter in BC via directly sponging miRNA 561-3p, and MALAT1 knockdown serves a vital antitumor role in BC cell progression through the miR-561-3p/TOP2A axis.
Collapse
Affiliation(s)
- Sara Hajibabaei
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Azimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nano-Biotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
16
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Doxorubicin and Cisplatin Modulate miR-21, miR-106, miR-126, miR-155 and miR-199 Levels in MCF7, MDA-MB-231 and SK-BR-3 Cells That Makes Them Potential Elements of the DNA-Damaging Drug Treatment Response Monitoring in Breast Cancer Cells—A Preliminary Study. Genes (Basel) 2023; 14:genes14030702. [PMID: 36980974 PMCID: PMC10048428 DOI: 10.3390/genes14030702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
One of the most innovative medical trends is personalized therapy, based on simple and reproducible methods that detect unique features of cancer cells. One of the good prognostic and diagnostic markers may be the miRNA family. Our work aimed to evaluate changes in selected miRNA levels in various breast cancer cell lines (MCF7, MDA-MB-231, SK-BR-3) treated with doxorubicin or cisplatin. The selection was based on literature data regarding the most commonly altered miRNAs in breast cancer (21-3p, 21-5p, 106a-5p, 126-3p, 126-5p, 155-3p, 155-5p, 199b-3p, 199b-5p, 335-3p, 335-5p). qPCR assessment revealed significant differences in the basal levels of some miRNAs in respective cell lines, with the most striking difference in miR-106a-5p, miR-335-5p and miR-335-3p—all of them were lowest in MCF7, while miR-153p was not detected in SK-BR-3. Additionally, different alterations of selected miRNAs were observed depending on the cell line and the drug. However, regardless of these variables, 21-3p/-5p, 106a, 126-3p, 155-3p and 199b-3p miRNAs were shown to respond either to doxorubicin or to cisplatin treatment. These miRNAs seem to be good candidates for markers of breast cancer cell response to doxorubicin or cisplatin. Especially since some earlier reports suggested their role in affecting pathways and expression of genes associated with the DNA-damage response. However, it must be emphasized that the preliminary study shows effects that may be highly related to the applied drug itself and its concentration. Thus, further examination, including human samples, is required.
Collapse
|