1
|
Tang J, Chen Q, Xiang L, Tu T, Zhang Y, Ou C. TRIM28 Fosters Microglia Ferroptosis via Autophagy Modulation to Enhance Neuropathic Pain and Neuroinflammation. Mol Neurobiol 2024; 61:9459-9477. [PMID: 38647647 DOI: 10.1007/s12035-024-04133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
This study explores the molecular underpinnings of neuropathic pain (NPP) and neuroinflammation, focusing on the role of TRIM28 in the regulation of autophagy and microglia ferroptosis. Leveraging transcriptomic data associated with NPP, we identified TRIM28 as a critical regulator of ferroptosis. Through comprehensive analysis, including Gene Ontology enrichment and protein-protein interaction network assessments, we unveiled GSK3B as a downstream target of TRIM28. Experimental validation confirmed the capacity of TRIM28 to suppress GSK3B expression and attenuate autophagic processes in microglia. We probed the consequences of autophagy and ferroptosis on microglia physiology, iron homeostasis, oxidative stress, and the release of proinflammatory cytokines. In a murine model, we validated the pivotal role of TRIM28 in NPP and neuroinflammation. Our analysis identified 20 ferroptosis regulatory factors associated with NPP, with TRIM28 emerging as a central orchestrator. Experimental evidence affirmed that TRIM28 governs microglial iron homeostasis and cell fate by downregulating GSK3B expression and modulating autophagy. Notably, autophagy was found to influence oxidative stress and proinflammatory cytokine release through the iron metabolism pathway, ultimately fueling neuroinflammation. In vivo experiments provided conclusive evidence of TRIM28-mediated pathways contributing to heightened pain sensitivity in neuroinflammatory states. The effect of TRIM28 on autophagy and microglia ferroptosis drives NPP and neuroinflammation. These findings offer promising avenues for identifying novel therapeutic targets to manage NPP and neuroinflammation.
Collapse
Affiliation(s)
- Jian Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Qi Chen
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Li Xiang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Ting Tu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital, Southwest Medical University, No.25 Taiping Street, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Zhang L, Cai M, Zhang X, Wang S, Pang L, Chen X, Zheng C, Sun Y, Liang Y, Guo S, Wei F, Zhang Y. Integrated analysis of microbiome and host transcriptome unveils correlations between lung microbiota and host immunity in bronchoalveolar lavage fluid of pneumocystis pneumonia patients. Microbes Infect 2024; 26:105374. [PMID: 38849069 DOI: 10.1016/j.micinf.2024.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood. METHODS Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP. RESULTS Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4+ T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs. CONCLUSION We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Sitong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lijun Pang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China
| | - Caopei Zheng
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Ying Liang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China; Beijing Research Center for Respiratory Infectious Diseases, China.
| |
Collapse
|
3
|
König S, Schroeder J, Nietzsche S, Heinekamp T, Brakhage AA, Zell R, Löffler B, Ehrhardt C. The influenza A virus promotes fungal growth of Aspergillus fumigatus via direct interaction in vitro. Microbes Infect 2024; 26:105264. [PMID: 38008399 DOI: 10.1016/j.micinf.2023.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Seasonal influenza A virus (IAV) infections still pose a major burden for public health worldwide. Severe disease progression or even death is often related to superinfections of the virus and a secondary bacterial pathogen. However, fungi, especially Aspergillus fumigatus, are also frequently diagnosed during IAV infection. Although, clinical studies have reported the severity of influenza-associated pulmonary aspergillosis, the molecular mechanisms underlying this type of disease are poorly understood. Here, a new in vitro model is introduced that allows the investigation of complex pathogen-host and pathogen-pathogen interactions during coinfection of lung epithelial cells with IAV and A. fumigatus. Our data reveal a reduced IAV load and IAV-induced cytokine and chemokine expression in the presence of A. fumigatus. At the same time, IAV infection promotes the growth of A. fumigatus. Even in the absence of the human host cell, purified IAV particles are able to induce hyphal growth, due to a direct interaction of the virus particles with the fungal surface. Thus, our study gives first insights into the complex interplay between IAV, A. fumigatus and the host cell as well as the two pathogens alone.
Collapse
Affiliation(s)
- Sarah König
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Josefine Schroeder
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Ziegelmühlenweg 1, D-07743 Jena, Germany.
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany.
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany.
| | - Roland Zell
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| |
Collapse
|