1
|
Zhou M, Han Y, Zhuo Y, Pu B, Li L, Liu Y, Peng D. Bioinduced phosphorus precipitation in granular sludge undergoing denitrifying biological phosphorus removal: Phosphorus recovery from sewage as hydroxyapatite. WATER RESEARCH 2025; 281:123590. [PMID: 40187148 DOI: 10.1016/j.watres.2025.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Recovering phosphorus from mainstream wastewater treatment systems by leveraging microbial metabolism without the addition of extra chemicals effectively streamlines the steps involved in phosphorus recovery from low-strength wastewater, thereby increasing the economic feasibility of the phosphorus recovery process. Hydroxyapatite (HAP, Ca5(PO4)3OH) can be formed directly via bioinduction in biological treatment systems, serving as a potential substitute for phosphate rock. HAP formation in sewage with low phosphate and Ca2+ concentrations is challenging. Denitrifying polyphosphate-accumulating organisms (DPAOs) can regulate phosphate ions and pH to facilitate HAP formation in sewage. In this study, the denitrifying biological phosphorus removal (DPR) system was established, achieving phosphorus and nitrate removal efficiencies of 99.3 % and 45.1 %, respectively. In the anaerobic and anoxic sections, the saturation index for HAP was greater than zero, indicating favourable conditions for HAP formation. Inorganic cores, identified as HAP through chemical composition and structural features, were formed in the DPR granular sludge, contributing approximately 66 % to phosphorus removal. The HAP‒DPR granular sludge, located at the bottom of the reactor, consisted of 80 wt % inorganic matter and 15.4 wt % total phosphorus, 86.1 % of which was chemical phosphorus precipitation. Microstructural analysis of HAP cores revealed poly-pellet structures with nanoscale wires. The growth of HAP minerals was not inhibited by intracellular polyphosphates. The presence of HAP cores promoted a differentiated spatial distribution of granular sludge and contributed to a differentiated microbial community structure. DPAOs were located mainly in small-sized granular sludge (Type A), whereas denitrifying glycogen-accumulating organisms were found mainly in large-sized granular sludge (Type B), where HAP formation primarily occurred. Granular sludge with higher inorganic and chemical phosphorus contents (Type C) likely originated from the disintegration of Type B. In conclusion, the HAP‒DPR system has potential for phosphorus recovery in the form of HAP directly from low-strength wastewater.
Collapse
Affiliation(s)
- Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Bingyu Pu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Lingyun Li
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yi Liu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
2
|
Bhushan S, Singh S, Maiti TK, Das A, Barui A, Chaudhari LR, Joshi MG, Dutt D. Zinc-doped hydroxyapatite loaded chitosan gelatin nanocomposite scaffolds as a promising platform for bone regeneration. Biomed Mater 2025; 20:025006. [PMID: 39740350 DOI: 10.1088/1748-605x/ada477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin (CG) nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (∼30 µm) of the CG scaffolds. It was observed that with the increase in the concentration of ZnHAP nanoparticles (3 wt%) in CG scaffolds, the swelling ratio (1760% ± 2.0%), porosity (71% ± 0.98%) and degradation rate (35%) decreased, whereas mechanical property (1 MPa) increased, which was better as compared to control (CG) samples. Similarly, the high deposition of apatite crystals especially CG-ZnHAP3nanocomposite scaffold revealed the excellent osteoconductive potential among all other scaffolds. MC3T3-E1 osteoblastic cells seeded with CG-ZnHAP nanocomposite scaffolds depicted better cell adhesion, proliferation and differentiation to osteogenic lineages. Finally, the chorioallantoic membrane (CAM) assay revealed better angiogenesis of ZnHAP nanoparticles (3 wt%) loaded CG scaffolds supporting vascularization after 7th day incubation in the CAM area. Overall, the results showed that the CG-ZnHAP3nanocomposite scaffold could be a potential candidate for bone defect repair.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| |
Collapse
|
3
|
Zhao R, Meng X, Pan Z, Li Y, Qian H, Zhu X, Yang X, Zhang X. Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments. Regen Biomater 2024; 12:rbae129. [PMID: 39776858 PMCID: PMC11703556 DOI: 10.1093/rb/rbae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties. Notably, nHA-based composites, incorporating metal, polymeric and bioceramic scaffolds, exhibit enhanced osteoconductivity and osteoinductivity. In orthopedic field, nHA and its composites serve effectively as bone graft substitutes, showing exceptional osteointegration and vascularization capabilities. In dentistry, these materials contribute to enamel remineralization, mitigate tooth sensitivity and are employed in surface modification of dental implants. For cancer therapy, nHA composites offer a promising strategy to inhibit tumor growth while sparing healthy tissues. Furthermore, nHA-based composites are emerging as sophisticated platforms with high surface ratio for the delivery of drugs and bioactive substances, gradually releasing therapeutic agents for progressive treatment benefits. Overall, this review delineates the synthesis, modifications and applications of nHA in various biomedical fields, shed light on the future advancements in biomaterials research.
Collapse
Affiliation(s)
- Rui Zhao
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Meng
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Zixian Pan
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Yongjia Li
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Liu K, Cheng M, Huang H, Yu H, Zhao S, Zhou J, Tie D, Wang J, Pan P, Chen J. Abalone shell-derived Mg-doped mesoporous hydroxyapatite microsphere drug delivery system loaded with icariin for inducing apoptosis of osteosarcoma cells. BIOMATERIALS TRANSLATIONAL 2024; 5:185-196. [PMID: 39351158 PMCID: PMC11438601 DOI: 10.12336/biomatertransl.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 10/04/2024]
Abstract
Hydroxyapatite (HAP) porous microspheres with very high specific surface area and drug loading capacity, as well as excellent biocompatibility, have been widely used in tumour therapy. Mg2+ is considered to be a key factor in bone regeneration, acting as an active agent to stimulate bone and cartilage formation, and is effective in accelerating cell migration and promoting angiogenesis, which is essential for bone tissue repair, anti-cancer, and anti-infection. In this study, abalone shells from a variety of sources were used as raw materials, and Mg2+-doped abalone shell-derived mesoporous HAP microspheres (Mg-HAP) were prepared by hydrothermal synthesis as Mg2+/ icariin smart dual delivery system (ICA-Mg-HAP, IMHA). With increasing of Mg2+ doping, the surface morphology of HAP microspheres varied from collapsed macroporous to mesoporous to smooth and non-porous, which may be due to Mg2+ substitution or coordination in the HAP lattice. At 30% Mg2+ doping, the Mg-HAP microspheres showed a more homogeneous mesoporous morphology with a high specific surface area (186.06 m2/g). The IMHA microspheres showed high drug loading (7.69%) and encapsulation rate (83.29%), sustained Mg2+ release for more than 27 days, sustained and stable release of icariin for 60 hours, and good responsiveness to pH (pH 6.4 > pH 5.6). In addition, the IMHA delivery system stimulated the rapid proliferation of bone marrow mesenchymal stem cells and induced apoptosis in MG63 cells by blocking the G2 phase cycle of osteosarcoma cells and stimulating the high expression of apoptotic genes (Bcl-2, caspase-3, -8, -9). This suggests that the abalone shell-based IMHA may have potential applications in drug delivery and tumour therapy.
Collapse
Affiliation(s)
- Kaihua Liu
- Marine College, Shandong University, Weihai, Shandong Province, China
- State Key Laboratory of Mineral Processing, Beijing, China
| | - Meiqi Cheng
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Hao Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian Province, China
| | - Hui Yu
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Shiyao Zhao
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Jinnuo Zhou
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Dan Tie
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Jianhua Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian Province, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, Shandong Province, China
- State Key Laboratory of Mineral Processing, Beijing, China
| |
Collapse
|
5
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Bietar K, Chu S, Mandl G, Zhang E, Chabaytah N, Sabelli R, Capobianco JA, Stochaj U. Silica-coated LiYF 4:Yb 3+, Tm 3+ upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells. RSC Adv 2024; 14:8695-8708. [PMID: 38495986 PMCID: PMC10938293 DOI: 10.1039/d3ra08869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.
Collapse
Affiliation(s)
- Kais Bietar
- Department of Physiology, McGill University Canada
| | - Siwei Chu
- Department of Physiology, McGill University Canada
| | - Gabrielle Mandl
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Emma Zhang
- Department of Physiology, McGill University Canada
| | | | | | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University Canada
- Quantitative Life Sciences Program, McGill University Montreal Canada
| |
Collapse
|
7
|
Wu W, Wang J. High efficiency adsorption of uranium by magnesia-silica-fluoride co-doped hydroxyapatite. CHEMOSPHERE 2024; 352:141398. [PMID: 38342147 DOI: 10.1016/j.chemosphere.2024.141398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Hydroxyapatite has a high affinity to uranium, and element doping can effectively improve its adsorption performance. In this study, magnesia-silica-fluoride co-doped hydroxyapatite composite was prepared by hydrothermal method, and the effect of single-phase and multiphase doping on the structure and properties of the composites was investigated. The results showed that the specific surface area of Mg-Si-F-nHA composites increased by 63.01% after doping. Comparing with nHA, U(VI) adsorption capacity of Si-nHA, Mg-Si-nHA and Mg-Si-F-nHA composites increased by 13.01%, 17.39% and 22.03%, respectively. The adsorption capacity of Mg-Si-F-nHA composite reached 1286.76 mg/g. Adsorbent dosage and pH obviously affected U(VI) adsorption, and the experimental data can be fitted well by PSO and Sips models. The physicochemical characterization before and after adsorption suggested that complexation, ion exchange and precipitation participated in uranium adsorption. In conclusion, different elements doping can effectively improve the uranium adsorption properties of hydroxyapatite composites.
Collapse
Affiliation(s)
- Wenjun Wu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, China.
| |
Collapse
|