1
|
Kim HJ, Gil YE, Kim JS. Conversion into short-arm canalithiasis as a cause of residual dizziness after repositioning maneuvers for BPPV. J Neurol 2025; 272:284. [PMID: 40121612 DOI: 10.1007/s00415-025-13031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Affiliation(s)
- Hyun-Jae Kim
- Department of Neurology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Young-Eun Gil
- Department of Neurology, College of Medicine, St. Vincent's Hospital, the Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Soo Kim
- Department of Neurology, Dizziness Center, and Clinical Neuroscience Center, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-guGyeonggi-do, Seongnam-si, 13620, Republic of Korea.
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Smith CM, Hammond AS, Urciuoli A, Braga J, Beaudet A, Cazenave M, Laitman JT, Almécija S. Divergent otolithic systems in the inner ear of Paranthropus robustus and Australopithecus africanus. J Hum Evol 2025; 199:103624. [PMID: 39675267 DOI: 10.1016/j.jhevol.2024.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
The bony labyrinth of the inner ear houses the sensory end-organs responsible for balance (otolithic system in the utricle and saccule, and semicircular canal system) and hearing (cochlea). Study of the bony labyrinth has revealed considerable morphological diversity in the hominin lineage (semicircular canals and cochleae) and aided in reconstructing essential aspects of primate evolution, including positional behavior, audition, and phylogenic affinities. However, evidence of evolutionary change in the hominin otolithic system remains elusive. Such morphological variation in these gravitoinertial sensory end-organs may suggest functional differences as their geometry is linked with positional behavior. We approach the question of evolutionary morphological change in the hominin otolithic system by examining bony vestibule morphology in two South African hominin taxa Paranthropus robustus (n = 9) and Australopithecus africanus (n = 6), compared to extant hominids (Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, and Homo sapiens). We use landmark-based shape analyses of 78 extant hominid inner ears by means of virtual three-dimensional models derived from micro-CT scans. Thirty bony landmarks were chosen to approximate otolithic organ morphology and relative configuration. Results show a distinctive morphology in P. robustus compared to A. africanus and extant hominids. Specifically, P. robustus exhibits anterolateral-posteromedial compression in bony otolithic organ structure, reducing the size of the saccule and vestibular aqueduct. In contrast, A. africanus exhibits a modern-human-like otolithic system. This newfound morphological diversity identifies unique bony features of the P. robustus inner ear which 1) offers potential evidence for differential positional behavior between P. robustus and A. africanus and 2) presents osteological markers to be used in taxonomic identification of P. robustus remains and in future assessments of Paranthropus classification.
Collapse
Affiliation(s)
- Christopher M Smith
- Division of Anthropology, American Museum of Natural History, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Division of Paleoanthropology, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany; Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, Alcalá de Henares 28871, Madrid, Spain
| | - José Braga
- Centre for Anthropobiology and Genomics of Toulouse, Université de Toulouse, Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, 6 Rue Michel Brunet, 86000 Poitiers, France; Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Marine Cazenave
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Anatomy, University of Pretoria, Pretoria, South Africa; Division of Anthropology, American Museum of Natural History, New York, NY, USA
| | - Jeffrey T Laitman
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, New York, NY, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
3
|
Smith CM, David R, Almécija S, Laitman JT, Hammond AS. First evolutionary insights into the human otolithic system. Commun Biol 2024; 7:1244. [PMID: 39358583 PMCID: PMC11447226 DOI: 10.1038/s42003-024-06966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
The human otolithic system (utricle and saccule), housed within the bony vestibule of the inner ear, establishes our sense of balance in conjunction with the semicircular canals. Yet, while the morphological evolution of the semicircular canals is actively explored, comparative morphological analyses of the otolithic system are lacking. This is regrettable because functional links with head orientation suggest the otolithic system could be used to track postural change throughout human evolution and across primates more broadly. In this context, we present the first analysis of the evolution of the human otolithic system within an anthropoid primate setting. Using the vestibule as a morphological proxy for the utricle and saccule, we compare humans to 13 other extant anthropoid species, and use phylogenetically-informed methods to find correlations with body size, endocranial flexion, and head-neck posture. Our results, obtained through micro-CT of 136 inner ears, reveal two major evolutionary transitions in hominoids, leading to distinctive vestibular morphology in humans, characterized by otolithic morphology resembling squirrel monkeys (possibly due to reversal), with a pronounced supraovalic fossa. Finally, we find a positional signal embedded in the anthropoid bony vestibule, providing the foundation to further explore the evolution of human head-neck posture using inner ear morphology.
Collapse
Affiliation(s)
- Christopher M Smith
- Division of Anthropology, American Museum of Natural History, New York, NY, USA.
- New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Romain David
- Centre for Human Evolution Research, Natural History Museum, London, UK
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeffrey T Laitman
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
4
|
Garaycochea O, Pérez-Fernández N. Variants of posterior semicircular canal involvement in benign paroxysmal positional vertigo. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2024; 75:324-334. [PMID: 38438080 DOI: 10.1016/j.otoeng.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024]
Abstract
Benign paroxysmal positional vertigo is the most common cause of peripheral vertigo. It is characterized by short and recurrent episodes of vertigo, trigged by specific head movements that displace otoconia within the semicircular canals. The movement of dislodge otoconia from the utricle cause abnormal positional endolymphatic currents. Primary treatment involves reposition maneuvers aimed at moving the displaced otoconia out the affected canal, therefore correct identification of the affected canal is essential for the diagnosis. The posterior semicircular canal (PSC) is the most frequently affected due to its spatial orientation and the force of gravity. Recent technological advances have allowed for better assessment of positional nystagmus during diagnostic and therapeutic maneuvers, revealing various possible scenarios of PSC involvement. Regarding the PSC, otoconia may be found in different parts of the canal, and not just in the expected location, floating in the long arm of the canal. The understanding of these variants is crucial, as the prognosis and the disease progression differ in such cases. This review aims to describe the six possible variants of PSC involvement described so far.
Collapse
Affiliation(s)
- Octavio Garaycochea
- Departamento de Otorrinolaringología, Hospital Vall d'Hebron, Barcelona, Spain.
| | | |
Collapse
|
5
|
Smith CM, Curthoys IS, Laitman JT. A morphometric comparison of the ductus reuniens in humans and guinea pigs, with a note on its evolutionary importance. Anat Rec (Hoboken) 2024. [PMID: 38965777 DOI: 10.1002/ar.25534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
The mammalian inner ear contains the sensory organs responsible for balance (semicircular canals, utricle, and saccule) and hearing (cochlea). While these organs are functionally distinct, there exists a critical structural connection between the two: the ductus reuniens (DR). Despite its functional importance, comparative descriptions of DR morphology are limited, hindering our understanding of the evolutionary diversification of hearing and balance systems among mammals. Using virtual 3D models derived from micro-CT, we examine the morphology of the DR and its relationship to the bony labyrinth in humans compared to that in a commonly used animal model, the guinea pig. Anatomical reconstructions and univariate measurements were carried out in the software 3D Slicer. Data indicate similarities in DR morphology between humans and guinea pigs in terms of overall shape. However, there are considerable differences in relative DR length and width between humans and guinea pigs. Humans possess a relatively shorter and narrower DR but with wider openings to the saccule and cochlear duct. This results in a relatively more constricted DR lumen in humans which may differentially limit fluid transfer between the saccule and cochlea. Our results reveal previously hidden morphological diversity in the communication between the hearing and balance systems of the mammalian inner ear which may indicate alternative strategies for isolating the Organ of Corti from the peripheral vestibular system throughout mammalian evolution.
Collapse
Affiliation(s)
- Christopher M Smith
- Division of Anthropology, American Museum of Natural History, New York City, New York, USA
- New York Consortium in Evolutionary Primatology, New York, USA
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Jeffrey T Laitman
- New York Consortium in Evolutionary Primatology, New York, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
6
|
Longridge NS, Mallinson AI. A New Perspective to Interpret How the Vestibular Efferent System Correlates the Complexity of Routine Balance Maintenance with Management of Emergency Fall Prevention Strategies. Audiol Res 2024; 14:518-544. [PMID: 38920965 PMCID: PMC11200673 DOI: 10.3390/audiolres14030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Bipedalism is unique among mammals. Until modern times, a fall and resulting leg fracture could be fatal. Balance maintenance after a destabilizing event requires instantaneous decision making. The vestibular system plays an essential role in this process, initiating an emergency response. The afferent otolithic neural response is the first directionally oriented information to reach the cortex, and it can then be used to initiate an appropriate protective response. Some vestibular efferent axons feed directly into type I vestibular hair cells. This allows for rapid vestibular feedback via the striated organelle (STO), which has been largely ignored in most texts. We propose that this structure is essential in emergency fall prevention, and also that the system of sensory detection and resultant motor response works by having efferent movement information simultaneously transmitted to the maculae with the movement commands. This results in the otolithic membrane positioning itself precisely for the planned movement, and any error is due to an unexpected external cause. Error is fed back via the vestibular afferent system. The efferent system causes macular otolithic membrane movement through the STO, which occurs simultaneously with the initiating motor command. As a result, no vestibular afferent activity occurs unless an error must be dealt with.
Collapse
Affiliation(s)
| | - Arthur I. Mallinson
- Division of Otolaryngology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|