1
|
Hossam Abdelmonem B, Kamal LT, Wardy LW, Ragheb M, Hanna MM, Elsharkawy M, Abdelnaser A. Non-coding RNAs: emerging biomarkers and therapeutic targets in cancer and inflammatory diseases. Front Oncol 2025; 15:1534862. [PMID: 40129920 PMCID: PMC11931079 DOI: 10.3389/fonc.2025.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant role in gene regulation, especially in cancer and inflammatory diseases. ncRNAs, such as microRNA, long non-coding RNAs, and circular RNAs, alter the transcriptional, post-transcriptional, and epigenetic gene expression levels. These molecules act as biomarkers and possible therapeutic targets because aberrant ncRNA expression has been directly connected to tumor progression, metastasis, and response to therapy in cancer research. ncRNAs' interactions with multiple cellular pathways, including MAPK, Wnt, and PI3K/AKT/mTOR, impact cellular processes like proliferation, apoptosis, and immune responses. The potential of RNA-based therapeutics, such as anti-microRNA and microRNA mimics, to restore normal gene expression is being actively studied. Additionally, the tissue-specific expression patterns of ncRNAs offer unique opportunities for targeted therapy. Specificity, stability, and immune responses are obstacles to the therapeutic use of ncRNAs; however, novel strategies, such as modified oligonucleotides and targeted delivery systems, are being developed. ncRNA profiling may result in more individualized and successful treatments as precision medicine advances, improving patient outcomes and creating early diagnosis and monitoring opportunities. The current review aims to investigate the roles of ncRNAs as potential biomarkers and therapeutic targets in cancer and inflammatory diseases, focusing on their mechanisms in gene regulation and their implications for non-invasive diagnostics and targeted therapies. A comprehensive literature review was conducted using PubMed and Google Scholar, focusing on research published between 2014 and 2025. Studies were selected based on rigorous inclusion criteria, including peer-reviewed status and relevance to ncRNA roles in cancer and inflammatory diseases. Non-English, non-peer-reviewed, and inconclusive studies were excluded. This approach ensures that the findings presented are based on high-quality and relevant sources.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Lilian Waheed Wardy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Research and Development Department, Eva Pharma for Pharmaceuticals Industries, Cairo, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- School of Medicine, New Giza University (NGU), Giza, Egypt
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Elsharkawy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
2
|
Booy EP, Gussakovsky D, Brown M, Shwaluk R, Nachtigal MW, McKenna SA. lncRNA BC200 is processed into a stable Alu monomer. RNA (NEW YORK, N.Y.) 2024; 30:1477-1494. [PMID: 39179355 PMCID: PMC11482611 DOI: 10.1261/rna.080152.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
The noncoding RNA BC200 is elevated in human cancers and is implicated in translation regulation as well as cell survival and proliferation. Upon BC200 overexpression, we observed correlated expression of a second, smaller RNA species. This RNA is expressed endogenously and exhibits cell-type-dependent variability relative to BC200. Aptamer-tagged expression constructs confirmed that the RNA is a truncated form of BC200, and sequencing revealed a modal length of 120 nt; thus, we refer to the RNA fragment as BC120. We present a methodology for accurate and specific detection of BC120 and establish that BC120 is expressed in several normal human tissues and is also elevated in ovarian cancer. BC120 exhibits remarkable stability relative to BC200 and is resistant to knockdown strategies that target the 3' unique sequence of BC200. Combined knockdown of BC200 and BC120 exhibits greater phenotypic impacts than knockdown of BC200 alone, and overexpression of BC120 negatively impacts translation of a GFP reporter, providing insight into a potential translational regulatory role for this RNA. The presence of a novel, truncated, and stable form of BC200 adds complexity to the investigation of this noncoding RNA that must be considered in future studies of BC200 and other related Alu RNAs.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Mira Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Rowan Shwaluk
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Mark W Nachtigal
- Department of Biochemistry and Medical Genetics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
3
|
De Pooter D, De Clerck B, Dockx K, De Santis D, Sauviller S, Dehertogh P, Beyens M, Bergiers I, Nájera I, Van Gulck E, Conceição-Neto N, Pierson W. Robust isolation protocol for mouse leukocytes from blood and liver resident cells for immunology research. PLoS One 2024; 19:e0304063. [PMID: 39172771 PMCID: PMC11340898 DOI: 10.1371/journal.pone.0304063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 08/24/2024] Open
Abstract
Research on liver-related conditions requires a robust and efficient method to purify viable hepatocytes, lymphocytes and all other liver resident cells, such as Kupffer or liver sinusoidal endothelial cells. Here we describe a novel purification method using liver enzymatic digestion, followed by a downstream optimized purification. Using this enzymatic digestion protocol, the resident liver cells as well as viable hepatocytes could be captured, compared to the classical mechanical liver disruption method. Moreover, single-cell RNA-sequencing demonstrated higher quality lymphocyte data in downstream analyses after the liver enzymatic digestion, allowing for studying of immunological responses or changes. In order to also understand the peripheral immune landscape, a protocol for lymphocyte purification from mouse systemic whole blood was optimized, allowing for efficient removal of red blood cells. The combination of microbeads and mRNA blockers allowed for a clean blood sample, enabling robust single-cell RNA-sequencing data. These two protocols for blood and liver provide important new methodologies for liver-related studies such as NASH, hepatitis virus infections or cancer research but also for immunology where high-quality cells are indispensable for further downstream assays.
Collapse
Affiliation(s)
- Dorien De Pooter
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Ben De Clerck
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Koen Dockx
- Charles River Laboratories, Beerse, Belgium
| | | | - Sarah Sauviller
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Pascale Dehertogh
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Matthias Beyens
- Discovery Technologies & Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, Beerse, Belgium
| | - Isabelle Bergiers
- Discovery Technologies & Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, Beerse, Belgium
| | - Isabel Nájera
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, California, Brisbane, United States of America
| | - Ellen Van Gulck
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Nádia Conceição-Neto
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Wim Pierson
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
4
|
Opmeer L, Gazzoli I, Ballmann M, Willemsen M, Voshol GP, Grudniewska-Lawton M, Havenga M, Yallop C, Hamidi A, Gillissen G, Bakker WAM. High throughput AS LNA qPCR method for the detection of a specific mutation in poliovirus vaccine strains. Vaccine 2024; 42:2475-2484. [PMID: 38503660 PMCID: PMC11007389 DOI: 10.1016/j.vaccine.2024.01.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Sabin Inactivated Poliovirus Vaccine (sIPV) has become one of the preferred vaccination options for the last step in the Poliovirus eradication program. Sequencing of poliovirus samples is needed during the manufacturing of poliovirus vaccines to assure the safety and immunogenicity of these vaccines. Next-generation sequencing analysis is the current costly and time-consuming gold standard for monitoring the manufacturing processes. We developed a low-cost and quick, highly sensitive, and allele-specific locked nucleic acid-probe-based reverse transcription quantitative PCR alternative that can accurately detect mutations in poliovirus vaccine samples during process development, scaling up, and release. Using the frequently in vitro occurring and viral replication-impacting VP1-E295K mutation as a showcase, we show that this technology can accurately detect E295K mutations in poliovirus 2 samples to similar levels as NGS. The qPCR technology was developed employing a synthetic dsDNA fragment-based standard curve containing mixes of E295K-WT (wildtype) and Mut (mutant) synthetic dsDNA fragments ranging from 1 × 107 copies/µL to 1 × 102 copies/µL to achieve a linear correlation with R2 > 0.999, and PCR efficiencies of 95-105 %. Individual standard concentration levels achieved accuracies of ≥92 % (average 96 %) and precisions of ≤17 % (average 3.3 %) RSD. Specificity of locked nucleic acid (LNA)-probes was confirmed in the presence and absence of co-mutations in the probe-binding region. Application of the developed assay to Sabin Poliovirus type 2 production run samples, illustrated a linear relationship with an R2 of 0.994, and an average accuracy of 97.2 % of the variant (allele)-specific AS LNA qPCR result, compared to NGS. The assay showed good sensitivity for poliovirus samples, containing E295K mutation levels between 0 % and 95 % (quantification range). In conclusion, the developed AS LNA qPCR presents a valuable low-cost, and fast tool, suitable for the process development and quality control of polio vaccines.
Collapse
Affiliation(s)
- Lizet Opmeer
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Isabella Gazzoli
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Mónika Ballmann
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Marieke Willemsen
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Gerben P Voshol
- GenomeScan B.V., Plesmanlaan 1d, 2333 BZ Leiden, The Netherlands
| | | | - Menzo Havenga
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Christopher Yallop
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Ahd Hamidi
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Gert Gillissen
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands
| | - Wilfried A M Bakker
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333CL Leiden, The Netherlands.
| |
Collapse
|
5
|
Engelbeen S, O'Reilly D, Van De Vijver D, Verhaart I, van Putten M, Hariharan V, Hassler M, Khvorova A, Damha MJ, Aartsma-Rus A. Challenges of Assessing Exon 53 Skipping of the Human DMD Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2023; 33:348-360. [PMID: 38010230 PMCID: PMC10698779 DOI: 10.1089/nat.2023.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 11/29/2023] Open
Abstract
Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the DMD transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the DMD transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/mdx males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.
Collapse
Affiliation(s)
- Sarah Engelbeen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel O'Reilly
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
- Department of Chemistry, McGill University, Montreal, Canada
| | - Davy Van De Vijver
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vignesh Hariharan
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
| | - Matthew Hassler
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
| | - Anastasia Khvorova
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|