1
|
Hasan MB, Parvez MM, Abir AY, Ahmad MF. A review on conducting organic polymers: Concepts, applications, and potential environmental benefits. Heliyon 2025; 11:e42375. [PMID: 39975833 PMCID: PMC11835703 DOI: 10.1016/j.heliyon.2025.e42375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
Polymer materials have long been valued for their insulating properties. But recent advancements have revealed their potential as electrically conductive materials, offering an alternative to traditional metallic conductors with the added benefit of reduced environmental impact. This review article provides a comprehensive overview of conducting organic polymers, focusing on their conceptual foundations, diverse applications, and their significant role in mitigating environmental pollution. The paper begins with an exploration of how polymeric materials have progressed from insulators to conductors, explaining the basic principles and mechanisms behind their electrical conductivity. It then provides an insight into the various applications enabled by their unique optical and electronic properties, including their use in light-emitting diodes, electrochromic displays, smart windows, fuel cells, solar cells, supercapacitors and batteries. Additionally, the review emphasizes the potential of conducting organic polymers in mitigating environmental pollution, particularly through their role in wastewater treatment and e-waste management. By examining recent advancements and promising future prospects, this article underscores the potential of conducting organic polymers to revolutionize both electronic technology and environmental sustainability.
Collapse
Affiliation(s)
- Md. Byzed Hasan
- Department of Chemistry, Pabna University of Science and Technology, Pabna-6600, Bangladesh
| | - Md. Masud Parvez
- Department of Chemistry, University of Barishal, Barishal-8254, Bangladesh
| | - Abrar Yasir Abir
- Department of Chemistry, Pabna University of Science and Technology, Pabna-6600, Bangladesh
| | - Md. Faruak Ahmad
- Department of Chemistry, Pabna University of Science and Technology, Pabna-6600, Bangladesh
| |
Collapse
|
2
|
Abdullah JAA, Ali Mohammed H, Salmi C, Alqarni Z, Eddine Laouini S, Guerrero A, Romero A. Sustainable synthesis of ZnO and Fe xO y nanoparticles and their nanocomposite ZnFe 2O 4: Comprehensive characterization and applications in antioxidant activity and antibiotics degradation efficiency. Bioorg Chem 2024; 153:107828. [PMID: 39306901 DOI: 10.1016/j.bioorg.2024.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 12/14/2024]
Abstract
This study focuses on developing and evaluating eco-friendly nanoparticles, specifically FexOy NPs, ZnO NPs, and a ZnFe2O4 nanocomposite (NC), for potential applications in environmental remediation and biomedicine. The nanoparticles were synthesized and characterized using X-ray diffraction (XRD), which revealed their crystalline structures with sizes of 20.3 nm for FexOy NPs, 22.1 nm for ZnO NPs, and 10.9 nm for ZnFe2O4 NC. Fourier-transform infrared (FTIR) spectroscopy identified functional groups, while UV-visible spectroscopy determined band gap energies of 2.35 eV, 3.38 eV, and 2.68 eV for FexOy NPs, ZnO NPs, and ZnFe2O4 NC, respectively. Morphological analysis via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that FexOy NPs have cubic, hexagonal, and tetragonal forms, ZnO NPs are hexagonal nanorods, and ZnFe2O4 NC has a hexagonal-faced cubic structure. Antioxidant activity, assessed through the DPPH assay, revealed that ZnFe2O4 NC had the highest potency. Additionally, under sunlight irradiation, ZnFe2O4 NC demonstrated superior degradation of the antibiotic cephalexin (96 % within 30 min) compared to FexOy NPs (58.2 %) and ZnO NPs (52 %), with respective kinetic rate constants of 0.109 min-1, 0.029 min-1, and 0.025 min-1. These results highlight the nanoparticles' potential for environmental and biomedical applications.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain.
| | - Hamdi Ali Mohammed
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria; Laboratory of Biotechnology, Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria
| | - Chaima Salmi
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria; Laboratory of Biotechnology, Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria
| | - Zarah Alqarni
- Department of Chemical, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Salah Eddine Laouini
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria; Laboratory of Biotechnology, Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Azzi M, Laib I, Bouafia A, Medila I, Tliba A, Laouini SE, Alsaeedi H, Cornu D, Bechelany M, Barhoum A. Antimutagenic and anticoagulant therapeutic effects of Ag/Ag 2O nanoparticles from Olea europaea leaf extract: mitigating metribuzin-induced hepato-and nephrotoxicity. Front Pharmacol 2024; 15:1485525. [PMID: 39508051 PMCID: PMC11538059 DOI: 10.3389/fphar.2024.1485525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Silver nanoparticles (Ag/Ag₂O NPs) have garnered attention for their potent antioxidant, antimicrobial, and anti-inflammatory properties, showing promise for therapeutic applications, particularly in mitigating chemical-induced toxicity. Objective This study aimed to synthesize Ag/Ag₂O NPs using Olea europaea (olive) leaf extract as a green, eco-friendly reducing agent and evaluate their protective effects against metribuzin-induced toxicity in Wistar rats, focusing on oxidative stress, hematological parameters, and lipid profiles, with specific dose optimization. Methodology Ag/Ag₂O NPs were synthesized using Olea europaea leaf extract, and their properties were confirmed via XRD, FTIR, SEM, EDS, and UV-visible spectroscopy. Wistar rats exposed to metribuzin (110 mg/kg/day) were treated with two doses of Ag/Ag₂O NPs (0.062 mg/kg and 0.125 mg/kg). Hematological and biochemical markers were assessed to evaluate the NPs' protective effects. Results Physicochemical characterization confirmed the successful formation of Ag/Ag₂O NPs loaded with phytochemicals, exhibiting crystallite sizes of 23 nm and 19 nm, a particle size of 25 nm, and significant peaks in XRD, FTIR, and UV-Vis spectra indicating the formation of Ag/Ag₂O. Metribuzin exposure led to significant hematological disruptions (elevated WBC, reduced RBC and hemoglobin) and worsened lipid profiles (increased cholesterol, LDL, and triglycerides). The lower NP dose (0.062 mg/kg) improved WBC, RBC, hemoglobin, and platelet counts, normalized lipid levels, and positively influenced biochemical markers such as serum creatinine and uric acid. In contrast, the higher NP dose (0.125 mg/kg) showed mixed results, with some improvements but an increase in triglycerides and continued elevation of ASAT and ALAT enzyme levels. Conclusion Ag/Ag₂O NPs synthesized via green methods using olive leaf extract effectively mitigated metribuzin-induced toxicity, especially at lower doses, by improving oxidative stress markers and hematological and biochemical profiles. Dose optimization is crucial to maximize therapeutic benefits and minimize adverse effects, underscoring their potential in treating chemical-induced toxicity.
Collapse
Affiliation(s)
- Manel Azzi
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ifriqya Medila
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ali Tliba
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Huda Alsaeedi
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Hassanzadeh N, Dekamin MG, Valiey E. A supramolecular magnetic and multifunctional Titriplex V-grafted chitosan organocatalyst for the synthesis of acridine-1,8-diones and 2-amino-3-cyano-4 H-pyran derivatives. NANOSCALE ADVANCES 2024:d4na00264d. [PMID: 39502107 PMCID: PMC11533062 DOI: 10.1039/d4na00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
In this research, a new supramolecular magnetic modified chitosan, namely, Fe3O4@CS-TDI-Titriplex V, was designed and prepared conveniently by grafting diethylenetriaminepentaacetic acid (Titriplex V) onto a biopolymeric chitosan backbone having urethane, urea, ester and amide functional groups. The obtained magnetic biopolymeric nanomaterial was properly characterized by different spectroscopic, microscopic or analytical methods including FTIR spectroscopy, EDX spectroscopy, XRD, FESEM, TG-DTA and VSM. The application of the supramolecular Fe3O4@CS-TDI-Titriplex V nanocomposite as a heterogeneous solid acidic organocatalyst was investigated to promote the three-component synthesis of both acridinediones and 2-amino-3-cyano-4H-pyran derivatives as important pharmaceutical scaffolds under green conditions. The obtained nanomaterial exhibited proper catalytic activity in the above mentioned transformations through multicomponent reaction (MCR) strategies. The reactions proceeded very well in the presence of the Fe3O4@CS-TDI-Titriplex V solid acid nanomaterial in EtOH to afford the corresponding acridinediones and 2-amino-3-cyano-4H-pyran derivatives in high to excellent yields. The key advantages of the present protocol include the use of a renewable, biopolymeric and biodegradable solid acid as well as a simple procedure for the preparation of the hybrid material. Furthermore, the Fe3O4@CS-TDI-Titriplex V nanomaterial was used four times with a slight decrease in its catalytic activity.
Collapse
Affiliation(s)
- Najmeh Hassanzadeh
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| |
Collapse
|
5
|
Emmanuel M. Unveiling the revolutionary role of nanoparticles in the oil and gas field: Unleashing new avenues for enhanced efficiency and productivity. Heliyon 2024; 10:e33957. [PMID: 39055810 PMCID: PMC11269882 DOI: 10.1016/j.heliyon.2024.e33957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Prominent oil corporations are currently engaged in a thorough examination of the potential implementation of nanoparticles within the oil and gas sector. This is evidenced by the substantial financial investments made towards research and development, which serves as a testament to the significant consideration given to nanoparticles. Indeed, nanoparticles has garnered increasing attention and innovative applications across various industries, including but not limited to food, biomedicine, electronics, and materials. In recent years, the oil and gas industry has conducted extensive research on the utilization of nanoparticles for diverse purposes, such as well stimulation, cementing, wettability, drilling fluids, and enhanced oil recovery. To explore the manifold uses of nanoparticles in the oil and gas sector, a comprehensive literature review was conducted. Reviewing several published study data leads to the conclusion that nanoparticles can effectively increase oil recovery by 10 %-15 % of the initial oil in place while tertiary oil recovery gives 20-30 % extra initial oil in place. Besides, it has been noted that the properties of the reservoir rock influence the choice of the right nanoparticle for oil recovery. The present work examines the utilization of nanoparticles in the oil and gas sector, providing a comprehensive analysis of their applications, advantages, and challenges. The article explores various applications of nanoparticles in the industry, including enhanced oil recovery, drilling fluids, wellbore strengthening, and reservoir characterization. By delving into these applications, the article offers a thorough understanding of how nanoparticles are employed in different processes within the sector. This analysis may prove highly advantageous for future studies and applications in the oil and gas sector.
Collapse
Affiliation(s)
- Marwa Emmanuel
- University of Dodoma, College of Natural and Mathematical Sciences, Chemistry Department, Dodoma, Tanzania
| |
Collapse
|
6
|
Hasan GG, Laouini SE, Osman AI, Bouafia A, Althamthami M, Meneceur S, Kir I, Mohammed H, Lumbers B, Rooney DW. Nanostructured Mn@NiO composite for addressing multi-pollutant challenges in petroleum-contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44254-44271. [PMID: 38943002 PMCID: PMC11252200 DOI: 10.1007/s11356-024-34012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Efficient catalysts play a pivotal role in advancing eco-friendly water treatment strategies, particularly in the removal of diverse organic contaminants found in water-petroleum sources. This study addresses the multifaceted challenges posed by contaminants, encompassing a spectrum of heavy metals such as As, Cd, Cr, Mn, Mo, Ni, Pb, Sb, Se, and Zn alongside pollutants like oily water (OIW), total suspended solids (TSS), chemical oxygen demand (COD), dyes, and pharmaceuticals, posing threats to both aquatic and terrestrial ecosystems. Herein, we present the synthesis of biogenically derived Mn@NiO nanocomposite (NC) photocatalysts, a sustainable methodology employing an aqueous Rosmarinus officinalis L. extract, yielding particles with a size of 36.7 nm. The catalyst demonstrates exceptional efficacy in removing heavy metals, achieving rates exceeding 99-100% within 30 min, alongside notable removal efficiencies for OIW (98%), TSS (87%), and COD (98%). Furthermore, our photodegradation experiments showed remarkable efficiencies, with 94% degradation for Rose Bengal (RB) and 96% for methylene blue (MB) within 120 min. The degradation kinetics adhere to pseudo-first-order behavior, with rate constants of 0.0227 min-1 for RB and 0.0370 min-1 for MB. Additionally, the NC exhibits significant antibiotic degradation rates of 97% for cephalexin (CEX) and 96% for amoxicillin (AMOX). The enhanced photocatalytic performance is attributed to the synergistic interplay between the Mn and NiO nanostructures, augmenting responsiveness to sunlight while mitigating electron-hole pair recombination. Notably, the catalyst demonstrates outstanding stability and reusability across multiple cycles, maintaining its stable nanostructure without compromise.
Collapse
Affiliation(s)
- Gamil Gamal Hasan
- Laboratory of Valorisation and Technology of Sahara Resources (VTRS), El Oued University, 39000, El Oued, Algeria
| | - Salah Eddine Laouini
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Abderrhmane Bouafia
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Mohammed Althamthami
- Physics Laboratory of Thin Films and Applications, Biskra University, BP 145, 07000, Biskra, RP, Algeria
| | - Souhaila Meneceur
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Iman Kir
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Hamdi Mohammed
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Brock Lumbers
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533, Kleve, Germany
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| |
Collapse
|
7
|
Tehrani MRF, Besalatpour AA. A combined landfarming-phytoremediation method to enhance remediation of mixed persistent contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37163-37174. [PMID: 38767793 DOI: 10.1007/s11356-024-33606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Contamination of soil and water with petroleum hydrocarbons and metals can pose a significant threat to the environment and human health. This study aimed to investigate the establishment and growth of tall fescue and agropyron in two petroleum-contaminated soils (soil S1 and soil S2) with previous landfarming treatments, and to assess the phytoremediation potential for heavy metal removal from these polluted soils. The results showed that the presence of petroleum hydrocarbons significantly (P < 0.05) reduced plant growth, but plant development was facilitated in soils with prior landfarming treatments. Urease activity in the rhizosphere of agropyron for soil S1 was about 47% higher than the unplanted control soil. The rhizosphere of agropyron and tall fescue eliminated more than 40% and 20% of total hydrocarbon amounts in soil S1, respectively, compared to the unplanted soil. Moreover, the plants grown in the landfarming treatment exhibited higher concentrations of metals (Fe, Zn, Mn, Cu, and Ni) than the control. Based on the findings, the combination of landfarming and phytoremediation techniques can provide an optimal solution for removing mixed pollutants, including petroleum hydrocarbons and metals, from the environment.
Collapse
Affiliation(s)
| | - Ali Asghar Besalatpour
- Department of Soil Science, College of Agriculture, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
8
|
Elattar KM, Al-Otibi FO, El-Hersh MS, Attia AA, Eldadamony NM, Elsayed A, Menaa F, Saber WI. Multifaceted chemical and bioactive features of Ag@TiO 2 and Ag@SeO 2 core/shell nanoparticles biosynthesized using Beta vulgaris L. extract. Heliyon 2024; 10:e28359. [PMID: 38560145 PMCID: PMC10979172 DOI: 10.1016/j.heliyon.2024.e28359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Due to increasing concerns about environmental impact and toxicity, developing green and sustainable methods for nanoparticle synthesis is attracting significant interest. This work reports the successful green synthesis of silver (Ag), silver-titanium dioxide (Ag@TiO2), and silver-selenium dioxide (Ag@SeO2) nanoparticles (NPs) using Beta vulgaris L. extract. Characterization by XRD, SEM, TEM, and EDX confirmed the successful formation of uniformly distributed spherical NPs with controlled size (25 ± 4.9 nm) and desired elemental composition. All synthesized NPs and the B. vulgaris extract exhibited potent free radical scavenging activity, indicating significant antioxidant potential. However, Ag@SeO2 displayed lower hemocompatibility compared to other NPs, while Ag@SeO2 and the extract demonstrated reduced inflammation in a carrageenan-induced paw edema animal model. Interestingly, Ag@TiO2 and Ag@SeO2 exhibited strong antifungal activity against Rhizoctonia solani and Sclerotia sclerotium, as evidenced by TEM and FTIR analyses. Generally, the findings suggest that B. vulgaris-derived NPs possess diverse biological activities with potential applications in various fields such as medicine and agriculture. Ag@TiO2 and Ag@SeO2, in particular, warrant further investigation for their potential as novel bioactive agents.
Collapse
Affiliation(s)
- Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S. El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Attia A. Attia
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Noha M. Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), Fluorotronics, Inc. California Innovation Corporation, San Diego, CA 92037, USA
| | - WesamEldin I.A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| |
Collapse
|
9
|
Buenaño L, Ali E, Jafer A, Zaki SH, Hammady FJ, Khayoun Alsaadi SB, Karim MM, Ramadan MF, Omran AA, Alawadi A, Alsalamy A, Kazemi A. Optimization by Box-Behnken design for environmental contaminants removal using magnetic nanocomposite. Sci Rep 2024; 14:6950. [PMID: 38521870 PMCID: PMC10960869 DOI: 10.1038/s41598-024-57616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
In this study, a CoO-Fe2O3/SiO2/TiO2 (CIST) nanocomposite was synthesized and utilized as an adsorbent to remove methylene blue (MB), malachite green (MG), and copper (Cu) from aqueous environments. The synthesized nanocomposite was characterized using field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Input parameters included pH (3-10), contact time (10-30 min), adsorbent amount (0.01-0.03 g), and pollutant concentration (20-60 mg L-1). The effects of these parameters on the removal process efficiency were modeled and optimized using the response surface methodology (RSM) based on the Box-Behnken design (BBD). The RSM-BBD method demonstrated the capability to develop a second-degree polynomial model with high validity (R2 ˃ 0.99) for the removal process. The optimization results using the RSM-BBD method revealed a removal efficiency of 98.01%, 93.06%, and 88.26% for MB, MG, and Cu, respectively, under optimal conditions. These conditions were a pH of 6, contact time of 10 min, adsorbent amount of 0.025 g, and concentration of 20 mg L-1. The synthesized adsorbent was recovered through five consecutive adsorption-desorption cycles using hydrochloric acid. The results showed an approximately 12% reduction from the first to the seventh cycle. Also, MB, MG, and Cu removal from real water samples in optimal conditions was achieved in the range of 81.69-98.18%. This study demonstrates the potential use of CIST nanocomposite as an accessible and reusable option for removing MB, MG, and Cu pollutants from aquatic environments.
Collapse
Affiliation(s)
- Luis Buenaño
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, 060155, Ecuador.
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | - Ahmed Jafer
- Department of Radiology and Sonar, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Shaima Haithem Zaki
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | - Fathi Jihad Hammady
- Department of Medical Engineering, Mazaya University College, Nasiriyah, Dhi Qar, Iraq
| | | | - Manal Morad Karim
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | - Alaa A Omran
- Department of Medical Engineering, AL-Nisour University College, Baghdad, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University of Najaf, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Baghdad, Al-Muthanna, 66002, Iraq
| | - Ali Kazemi
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Hasan GG, Laouini SE, Khelef A, Mohammed HA, Althamthami M, Meneceur S, Alharthi F, Alshareef SA, Menaa F. Efficient treatment of oily wastewater, antibacterial activity, and photodegradation of organic dyes using biosynthesized Ag@Fe 3O 4 nanocomposite. Bioprocess Biosyst Eng 2024; 47:75-90. [PMID: 38081951 DOI: 10.1007/s00449-023-02946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024]
Abstract
A significant waste (e.g., high oil content and pollutants such as heavy metals, dyes, and microbial contaminants) in water is generated during crude oil extraction and industrial processes, which poses environmental challenges. This study explores the potential of Ag@Fe3O4 nanocomposite (NC) biosynthesized using the aqueous leaf extract of Laurus nobilis for the treatment of oily wastewater. The NC was characterized using ultraviolet-visible (UV-Vis) spectrophotometry, Scanning Electron Microscopy (SEM), Fourier Transformed Infrared (FTIR) and X-Ray Diffraction (XRD) spectroscopies. The crystalline structure of the NC was determined to be face-centered cubic with an average size of 42 nm. Ag@Fe3O4 NC exhibited significant degradation (96.8%, 90.1%, and 93.8%) of Rose Bengal (RB), Methylene Blue (MB), and Toluidine Blue (TB), respectively, through a reduction reaction lasting 120 min at a dye concentration of 10 mg/L. The observed reaction kinetics followed a pseudo-first-order model, with rate constants (k-values) of 0.0284 min-1, 0.0189 min-1, and 0.0212 min-1 for RB, MB, and TB, respectively. The fast degradation rate can be attributed to the low band gap (1.9 eV) of Ag@Fe3O4 NC. The NC elicited an impressive effectiveness (99-100%, 98.0%, and 91.8% within 30 min) in removing, under sunlight irradiation, several heavy metals, total petroleum hydrocarbons (TPH), and total suspended solids (TSS) from the oily water samples. Furthermore, Ag@Fe3O4 NC displayed potent antibacterial properties and a good biocompatibility. These findings contribute to the development of efficient and cost-effective methods for wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Gamil Gamal Hasan
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria.
- Laboratory of Valorization and Technology of Sahara Resources (VTRS), El Oued University, 39000, El Oued, Algeria.
| | - Salah Eddine Laouini
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Abdelhamid Khelef
- Laboratory of Valorization and Technology of Sahara Resources (VTRS), El Oued University, 39000, El Oued, Algeria
| | - Hamdi Ali Mohammed
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Mohammed Althamthami
- Department of Process Engineering, College of Science and Technology, Biskra University, 07000, Biskra, Algeria
| | - Souhaila Meneceur
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Sohad A Alshareef
- Department of Chemistry, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), Fluorotronics, Inc. - California Innovations Corporation, San Diego, CA, 92037, USA.
| |
Collapse
|
11
|
Eddy NO, Garg R, Garg R, Ukpe RA, Abugu H. Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:65. [PMID: 38112987 DOI: 10.1007/s10661-023-12194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
In view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants. Literatures have been reviewed on the application of various AgNPS as adsorbent and photocatalyst in the remediation of several classes of organic contaminants. Theories of adsorption have also been outlined while photocatalysis is seen to have adsorption as the initial mechanism. Challenges facing the application of silver nanoparticles have also been highlighted and possible solutions have been presented. However, current information is dominated by applications on dyes and the view of the authors supports the need to strengthen the usefulness of AgNPS in adsorption and photodegradation of more classes of organic contaminants, especially emerging contaminants. We also encourage the simultaneous applications of adsorption and photodegradation to completely convert toxic wastes to harmless forms.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | | | - Hillary Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
12
|
Torkaman P, Karimzadeh R, Jafari A. Assessment of the synthesis method of Fe 3O 4 nanocatalysts and its effectiveness in viscosity reduction and heavy oil upgrading. Sci Rep 2023; 13:18151. [PMID: 37875527 PMCID: PMC10598015 DOI: 10.1038/s41598-023-41441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/26/2023] [Indexed: 10/26/2023] Open
Abstract
In this research, Fe3O4 nanocatalysts were synthesized systematically microwave-assisted. The effectiveness of the synthesized nanocatalysts in reducing viscosity and upgrading heavy oil was evaluated. The nanocatalysts were investigated for their magnetic and electromagnetic properties. The impact of microwave radiation's time and power on the size and purity of nanocatalysts was investigated. The purities in the crystal network of Fe3O4 nanocatalysts expanded as a result of reducing microwave radiation time and power due to less heat production. Increased temperature leads to dope NH4Cl into the Fe3O4 nanocatalysts crystal network. At: 1 min and power of 400 watts the most satisfactory results in the size and purity of nanocatalysts. The electromagnetic properties, size, and effectiveness of the synthesized Fe3O4 nanocatalysts have been examined to determine the effect of the synthesis method. The performance of Fe3O4 nanocatalysts synthesized by co-precipitation and microwave-assisted viscosity reduction and heavy oil upgrading was evaluated and compared. The crystallite size of the Fe3O4 nanocatalysts synthesized by microwave-assisted was smaller than that synthesized using co-precipitation. Fe3O4 nanocatalysts synthesized by microwave-assisted and the co-precipitation method decreased viscosity by 28% and 23%, respectively. Moreover, Fe3O4 nanocatalysts synthesized by microwave-assisted reduced the sulfoxide index and aromatic index considerably more than the co-precipitation synthesized Fe3O4 (90% against. 48% and 13% vs. 7%, respectively).
Collapse
Affiliation(s)
- Parya Torkaman
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ramin Karimzadeh
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Arezou Jafari
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|