1
|
Wang W, Zhao L, He Z, Zhao Y, Jiang G, Gong C, Zhang Y, Yu J, Liang T, Guo L. Decoding Multifaceted Roles of Sleep-Related Genes as Molecular Bridges in Chronic Disease Pathogenesis. Int J Mol Sci 2025; 26:2872. [PMID: 40243466 PMCID: PMC11988575 DOI: 10.3390/ijms26072872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Sleep is a fundamental process essential for all organisms. Sleep deprivation can lead to significant detrimental effects, contributing to various physiological disorders and elevating the risk of several diseases. Investigating the relationship between sleep and human diseases offers valuable insights into the molecular mechanisms governing sleep regulation, potentially guiding the development of more effective treatments for sleep disorders and associated diseases. This study explored the roles of sleep-related genes in biological processes and their associations with chronic diseases, mainly including neurological, metabolic, cardiovascular diseases, and cancer. Additionally, an analysis on the sleep-related genes was also performed to understand the potential role in tumorigenesis. This review aims to enhance the understanding of the link between sleep-related genes and chronic diseases, contributing to the development of novel therapeutic approaches targeting sleep and circadian rhythm-related chronic diseases.
Collapse
Affiliation(s)
- Wenyuan Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Linjie Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Zhiheng He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Yang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Guijie Jiang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Chengjun Gong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Yan Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| |
Collapse
|
2
|
Su F, Pfundstein G, Sah S, Zhang S, Keable R, Hagan DW, Sharpe LJ, Clemens KJ, Begg D, Phelps EA, Brown AJ, Leshchyns'ka I, Sytnyk V. Neuronal growth regulator 1 (NEGR1) promotes the synaptic targeting of glutamic acid decarboxylase 65 (GAD65). J Neurochem 2025; 169:e16279. [PMID: 39676071 DOI: 10.1111/jnc.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Neuronal growth regulator 1 (NEGR1) is a synaptic plasma membrane localized cell adhesion molecule implicated in a wide spectrum of psychiatric disorders. By RNAseq analysis of the transcriptomic changes in the brain of NEGR1-deficient mice, we found that NEGR1 deficiency affects the expression of the Gad2 gene. We show that glutamic acid decarboxylase 65 (GAD65), the Gad2 - encoded enzyme synthesizing the inhibitory neurotransmitter GABA on synaptic vesicles, accumulates non-synaptically in brains of NEGR1-deficient mice. The density of non-synaptic GAD65 accumulations is also increased in NEGR1 deficient cultured hypothalamic neurons, and this effect is rescued by re-expression of NEGR1. By using a novel biosensor of the plasma membrane attachment of GAD65, we demonstrate that GAD65 attaches to the plasma membrane. NEGR1 promotes palmitoylation-dependent clearance of GAD65 from the plasma membrane and targeting of GAD65 to plasma membrane-derived endocytic vesicles. In NEGR1 deficient cultured hypothalamic neurons, the synaptic and extrasynaptic levels of the plasma membrane attached GAD65 are increased, and the synaptic levels of GABA are reduced. NEGR1-deficient mice are characterized by reduced body weight, lower GABAergic synapse densities in the arcuate nucleus, and blunted responsiveness to the reinforcing effects of food rewards. Our results indicate that abnormalities in synaptic GABA synthesis can contribute to brain disorders associated with abnormal expression of NEGR1 in humans.
Collapse
Affiliation(s)
- Feifei Su
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Shuyue Zhang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Kelly J Clemens
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Denovan Begg
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Cowen MH, Raizen DM, Hart MP. Structural neuroplasticity after sleep loss modifies behavior and requires neurexin and neuroligin. iScience 2024; 27:109477. [PMID: 38551003 PMCID: PMC10973677 DOI: 10.1016/j.isci.2024.109477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 03/08/2024] [Indexed: 02/08/2025] Open
Abstract
Structural neuroplasticity (changes in the size, strength, number, and targets of synaptic connections) can be modified by sleep and sleep disruption. However, the causal relationships between genetic perturbations, sleep loss, neuroplasticity, and behavior remain unclear. The C. elegans GABAergic DVB neuron undergoes structural plasticity in adult males in response to adolescent stress, which rewires synaptic connections, alters behavior, and is dependent on conserved autism-associated genes NRXN1/nrx-1 and NLGN3/nlg-1. We find that four methods of sleep deprivation transiently induce DVB neurite extension in day 1 adults and increase the time to spicule protraction, which is the functional and behavioral output of the DVB neuron. Loss of nrx-1 and nlg-1 prevent DVB structural plasticity and behavioral changes at day 1 caused by adolescent sleep loss. Therefore, nrx-1 and nlg-1 mediate the morphologic and behavioral consequences of sleep loss, providing insight into the relationship between sleep, neuroplasticity, behavior, and neurologic disease.
Collapse
Affiliation(s)
- Mara H. Cowen
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Nakai A, Kashiwagi M, Fujiyama T, Iwasaki K, Hirano A, Funato H, Yanagisawa M, Sakurai T, Hayashi Y. Crucial role of TFAP2B in the nervous system for regulating NREM sleep. Mol Brain 2024; 17:13. [PMID: 38413970 PMCID: PMC10900699 DOI: 10.1186/s13041-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
The AP-2 transcription factors are crucial for regulating sleep in both vertebrate and invertebrate animals. In mice, loss of function of the transcription factor AP-2β (TFAP2B) reduces non-rapid eye movement (NREM) sleep. When and where TFAP2B functions, however, is unclear. Here, we used the Cre-loxP system to generate mice in which Tfap2b was specifically deleted in the nervous system during development and mice in which neuronal Tfap2b was specifically deleted postnatally. Both types of mice exhibited reduced NREM sleep, but the nervous system-specific deletion of Tfap2b resulted in more severe sleep phenotypes accompanied by defective light entrainment of the circadian clock and stereotypic jumping behavior. These findings indicate that TFAP2B in postnatal neurons functions at least partly in sleep regulation and imply that TFAP2B also functions either at earlier stages or in additional cell types within the nervous system.
Collapse
Affiliation(s)
- Ayaka Nakai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Arisa Hirano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Zhang M, Feng J, Li Y, Qin PZ, Chai Y. Generation of tamoxifen-inducible Tfap2b-CreER T2 mice using CRISPR-Cas9. Genesis 2024; 62:e23582. [PMID: 38069547 PMCID: PMC11021159 DOI: 10.1002/dvg.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Tfap2b, a pivotal transcription factor, plays critical roles within neural crest cells and their derived lineage. To unravel the intricate lineage dynamics and contribution of these Tfap2b+ cells during craniofacial development, we established a Tfap2b-CreERT2 knock-in transgenic mouse line using the CRISPR-Cas9-mediated homologous direct repair. By breeding with tdTomato reporter mice and initiating Cre activity through tamoxifen induction at distinct developmental time points, we show the Tfap2b lineage within the key neural crest-derived domains, such as the facial mesenchyme, midbrain, cerebellum, spinal cord, and limbs. Notably, the migratory neurons stemming from the dorsal root ganglia are visible subsequent to Cre activity initiated at E8.5. Intriguingly, Tfap2b+ cells, serving as the progenitors for limb development, show activity predominantly commencing at E10.5. Across the mouse craniofacial landscape, Tfap2b exhibits a widespread presence throughout the facial organs. Here we validate its role as a marker of progenitors in tooth development and have confirmed that this process initiates from E12.5. Our study not only validates the Tfap2b-CreERT2 transgenic line, but also provides a powerful tool for lineage tracing and genetic targeting of Tfap2b-expressing cells and their progenitor in a temporally and spatially regulated manner during the intricate process of development and organogenesis.
Collapse
Affiliation(s)
- Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yue Li
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Koutsoumparis A, Busack I, Chen CK, Hayashi Y, Braeckman BP, Meierhofer D, Bringmann H. Reverse genetic screening during L1 arrest reveals a role of the diacylglycerol kinase 1 gene dgk-1 and sphingolipid metabolism genes in sleep regulation. Genetics 2023; 225:iyad124. [PMID: 37682641 DOI: 10.1093/genetics/iyad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/01/2023] [Indexed: 09/10/2023] Open
Abstract
Sleep is a fundamental state of behavioral quiescence and physiological restoration. Sleep is controlled by environmental conditions, indicating a complex regulation of sleep by multiple processes. Our knowledge of the genes and mechanisms that control sleep during various conditions is, however, still incomplete. In Caenorhabditis elegans, sleep is increased when development is arrested upon starvation. Here, we performed a reverse genetic sleep screen in arrested L1 larvae for genes that are associated with metabolism. We found over 100 genes that are associated with a reduced sleep phenotype. Enrichment analysis revealed sphingolipid metabolism as a key pathway that controls sleep. A strong sleep loss was caused by the loss of function of the diacylglycerol kinase 1 gene, dgk-1, a negative regulator of synaptic transmission. Rescue experiments indicated that dgk-1 is required for sleep in cholinergic and tyraminergic neurons. The Ring Interneuron S (RIS) neuron is crucial for sleep in C. elegans and activates to induce sleep. RIS activation transients were abolished in dgk-1 mutant animals. Calcium transients were partially rescued by a reduction-of-function mutation of unc-13, suggesting that dgk-1 might be required for RIS activation by limiting synaptic vesicle release. dgk-1 mutant animals had impaired L1 arrest survival and dampened expression of the protective heat shock factor gene hsp-12.6. These data suggest that dgk-1 impairment causes broad physiological deficits. Microcalorimetry and metabolomic analyses of larvae with impaired RIS showed that RIS is broadly required for energy conservation and metabolic control, including for the presence of sphingolipids. Our data support the notion that metabolism broadly influences sleep and that sleep is associated with profound metabolic changes. We thus provide novel insights into the interplay of lipids and sleep and provide a rich resource of mutants and metabolic pathways for future sleep studies.
Collapse
Affiliation(s)
- Anastasios Koutsoumparis
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Inka Busack
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Henrik Bringmann
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| |
Collapse
|