1
|
Gemünde A, Rossini E, Lenz O, Frielingsdorf S, Holtmann D. Chemoorganotrophic electrofermentation by Cupriavidus necator using redox mediators. Bioelectrochemistry 2024; 158:108694. [PMID: 38518507 DOI: 10.1016/j.bioelechem.2024.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
The non-pathogenic β-proteobacterium Cupriavidus necator has the ability to switch between chemoorganotrophic, chemolithoautotrophic and electrotrophic growth modes, making this microorganism a widely used host for cellular bioprocesses. Oxygen usually acts as the terminal electron acceptor in all growth modes. However, several challenges are associated with aeration, such as foam formation, oxygen supply costs, and the formation of an explosive gas mixture in chemolithoautotrophic cultivation with H2, CO2 and O2. Bioelectrochemical systems in which O2 is replaced by an electrode as a terminal electron acceptor offer a promising solution to these problems. The aim of this study was to establish a mediated electron transfer between the anode and the metabolism of living cells, i.e. anodic respiration, using fructose as electron and carbon source. Since C. necator is not able to transfer electrons directly to an electrode, redox mediators are required for this process. Based on previous observations on the extracellular electron transfer enabled by a polymeric mediator, we tested 11 common biological and non-biological redox mediators for their functionality and inhibitory effect for anodic electron transfer in a C. necator-based bioelectrochemical system. The use of ferricyanide at a concentration of 15 mM resulted in the highest current density of 260.75µAcm-2 and a coulombic efficiency of 64.1 %.
Collapse
Affiliation(s)
- André Gemünde
- Institute of Bioprocess Engineering and Pharmaceutical Technology and Competence Centre for Sustainable Engineering and Environmental Systems, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany
| | - Elena Rossini
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology and Competence Centre for Sustainable Engineering and Environmental Systems, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
3
|
Schwarz IA, Alsaqri B, Lekbach Y, Henry K, Gorman S, Woodard T, Dion L, Real L, Holmes DE, Smith JA, Lovley DR. Lack of physiological evidence for cytochrome filaments functioning as conduits for extracellular electron transfer. mBio 2024; 15:e0069024. [PMID: 38717196 PMCID: PMC11077965 DOI: 10.1128/mbio.00690-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.
Collapse
Affiliation(s)
- Ingrid A. Schwarz
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Baha Alsaqri
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Yassir Lekbach
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Kathryn Henry
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Sydney Gorman
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Trevor Woodard
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Laura Dion
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Lauren Real
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Dawn E. Holmes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Jessica A. Smith
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Mei N, Tremblay PL, Wu Y, Zhang T. Proposed mechanisms of electron uptake in metal-corroding methanogens and their potential for CO 2 bioconversion applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171384. [PMID: 38432383 DOI: 10.1016/j.scitotenv.2024.171384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Some methanogens are electrotrophic bio-corroding microbes that can acquire electrons from solid surfaces including metals. In the laboratory, pure cultures of methanogenic cells oxidize iron-based materials including carbon steel, stainless steel, and Fe0. For buried or immersed pipelines or other metallic structures, methanogens are often major components of corroding biofilms with complex interspecies relationships. Models explaining how these microbes acquire electrons from solid donors are multifaceted and include electron transfer via redox mediators such as H2 or by direct contact through membrane proteins. Understanding the electron uptake (EU) routes employed by corroding methanogens is essential to develop efficient strategies for corrosion prevention. It is also beneficial for the development of bioenergy applications relying on methanogenic EU from solid donors such as bioelectromethanogenesis, hybrid photosynthesis, and the acceleration of anaerobic digestion with electroconductive particles. Many methanogenic species carrying out biocorrosion are the same ones forming the extensive abiotic-biological interfaces at the core of these bio-applications. This review will discuss the interactions between corrosive methanogens and metals and how the EU capability of these microbes can be harnessed for different sustainable biotechnologies.
Collapse
Affiliation(s)
- Nan Mei
- Institut WUT-AMU, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- Institut WUT-AMU, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, PR China
| | - Yuyang Wu
- Institut WUT-AMU, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- Institut WUT-AMU, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, PR China.
| |
Collapse
|