1
|
Amann S, Wagemann F, Buchinger S, Dietrich C, Wick A, Rahimi A, Schmidt-Döhl F, Ternes TA. Impact of sulfate on the release of genotoxic metals from hardened cement pastes. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:137990. [PMID: 40187260 DOI: 10.1016/j.jhazmat.2025.137990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
We investigated the effects of environmentally relevant sulfate concentrations on the leaching behavior of certain metalloids in hardened cement pastes. In our study, different cement pastes made of Portland cement (CEM I), blast furnace slag cement (CEM III/A) and a sulfate-resistant cement (CEM I SR0) were cured for 28 days and leached with ultrapure water and with sulfate-containing water. The released concentrations of the most metals and metalloids were independent of the presence of environmentally relevant sulfate concentrations below 1 µg/L or even below the limit of quantification (LOQ). However, the contact to sulfate-containing water led to an increased chromium release from CEM I, compared to leaching in ultrapure water. Under the same conditions an increased release of vanadium was observed from CEM III/A. A micronucleus test of the selected eluates revealed genotoxic effects which can be very likely attributed to the presence of vanadate. We were further able to connect the different leaching behavior of cement in sulfate-containing water compared to ultrapure water to changes of the specific surface area of the hardened cement pastes.
Collapse
Affiliation(s)
- Steffen Amann
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 560687, Germany
| | - Falk Wagemann
- Hamburg University of Technology, Institute for Materials, Physics and Chemistry of Buildings, Eissendorfer Str. 42, Hamburg 21073, Germany
| | | | - Christian Dietrich
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 560687, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 560687, Germany
| | - Amir Rahimi
- Federal Waterways Engineering and Research Institute, Kussmaulstrasse 17, Karlsruhe 76187, Germany
| | - Frank Schmidt-Döhl
- Hamburg University of Technology, Institute for Materials, Physics and Chemistry of Buildings, Eissendorfer Str. 42, Hamburg 21073, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 560687, Germany; University of Koblenz, Universitätsstrasse 1, Koblenz 56070, Germany.
| |
Collapse
|
2
|
Macar TK, Macar O. A study on the effect of Hypericum perforatum L. extract on vanadium toxicity in Allium cepa L. Sci Rep 2024; 14:28486. [PMID: 39557924 PMCID: PMC11574246 DOI: 10.1038/s41598-024-79535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
The growth of industrialization growth the risk of vanadium (V) contamination. The objective of this study was to examine the impact of 200 µg L- 1 VCI3 -induced toxicity as well as the potential protective effect of 187.5 mg L- 1 and 375 mg L- 1Hypericum perforatum (H. perforatum) extracts against this toxicity on the Allium cepa (A. cepa) model organism. For this purpose, a series of investigations were conducted on the growth physiology alterations (germination percentage, root elongation, weight gain), cytogenetic alterations (mitotic index, micronucleus, chromosomal aberrations), biochemical alterations (malondialdehyde, superoxide dismutase, catalase) and defects in meristematic tissue in A. cepa. In addition, the phenolic compound content of H. perforatum extract was determined by the LC/MS-MS method. V application negatively affected all the investigated parameters and caused a serious phytotoxic and genotoxic effect as well as oxidative stress in A. cepa. Conversely, no statistical difference was observed between the parameters of the groups treated with H. perforatum extract and those of the control group. The administration of H. perforatum extract combined with V resulted in a notable enhancement in germination percentage, root elongation, weight gain, mitotic index value, chlorophyll a level and chlorophyll b level. Additionally, it led to a reduction in micronucleus and chromosomal aberrations frequencies, as well as meristematic tissue defects. Furthermore, LC/MS-MS analysis demonstrated that H. perforatum extract contains phenolic compounds, including catechin, epicatechin, quercetin, oleuropein and rutin, which confer antioxidant properties to the extract. The study provided clear evidence that H. perforatum extract attenuates the toxic effects of V in A. cepa, which can be attributed to its high content of bioactive phenols. The findings of the study indicate that H. perforatum extract may serve as a protective natural agent for daily use against heavy metal toxicity.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, 28400, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, 28400, Turkey.
| |
Collapse
|
3
|
Kuloğlu SS, Çavuşoğlu K, Yalçın E. LC-MS/MS phenolic profileand remedial role of Urtica dioica extract against Li 2CO 3-induced toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54589-54602. [PMID: 39207615 DOI: 10.1007/s11356-024-34791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
In this study, the protective role of Urtica dioica extract (Udex) against Li2CO3 toxicity in Allium cepa L. was investigated using various parameters such as germination rates, root growth, weight gain, mitotic index (MI), malondialdehyde (MDA), micronucleus (MN), antioxidant enzyme activity, chromosomal abnormalities (CAs) and anatomical changes. As the biological activity of Udex is related to its active content, the profile of phenolic compounds was determined by LC-MS/MS analysis. Li2CO3 caused abnormalities in the tested parameters and serious regressions in germination parameters. Application of 100 mg/L Li2CO3 reduced the chlorophyll a and b contents by 73.04% and 65.7%, respectively. Li2CO3 application exhibited a cytotoxic effect by inducing significant decreases in MI and increases in the frequency of MN, and also showed a genotoxic effect by causing CAs. After 100 mg/L Li2CO3 treatment, MDA, proline, superoxide dismutase, and catalase levels increased by 54.9%, 58.5%, 47.8%, and 52.3%, respectively. Li2CO3 and Udex co-administration resulted in a regression in increased biochemical parameters and genotoxicity parameters, and an improvement in germination parameters. Furthermore, Udex demonstrated efficacy in mitigating the detrimental effects of Li2CO3 on the root tip, particularly in the 200 µg/mL Udex-treated group. The thickening of the cortex cell wall and conduction tissue, which is commonly induced by Li₂CO₃, was not observed in the Udex-treated group. The protective effect of Udex can be explained by the phenolic compounds it contains. Rutin was detected as the major component in Udex and other phenolics were listed according to their presence rate as protecatechuic acid > caffeic acid > p-coumaric acid > syringic acid > rosemarinic acid > epicatechin. Li ions, which increase in the environment after industrialization, are an important environmental pollutant and exhibit toxicity that affects many pathways in organisms. Scientific research should not only detect these toxic effects but also develop solutions to such problems. In this study, it was determined that the Udex application had a toxicity-reducing role against Li2CO3 toxicity. Also, it has been demonstrated that A. cepa is an important indicator in determining this toxicity and toxicity-reducing applications.
Collapse
Affiliation(s)
- Selin Sipahi Kuloğlu
- Department of Biology, Institute of Science, Giresun University, Giresun, Türkiye
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Türkiye
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Türkiye.
| |
Collapse
|
4
|
Ayhan BS, Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K, Özkan B. A comprehensive analysis of royal jelly protection against cypermethrin-induced toxicity in the model organism Allium cepa L., employing spectral shift and molecular docking approaches. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105997. [PMID: 39084771 DOI: 10.1016/j.pestbp.2024.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
In this study, the toxicity of the pesticide cypermethrin and the protective properties of royal jelly against this toxicity were investigated using Allium cepa L., a model organism. Toxicity was evaluated using 6 mg/L cypermethrin, while royal jelly (250 mg/L and 500 mg/L) was used in combination with cypermethrin to test the protective effect. To comprehend toxicity and protective impact, growth, genotoxicity, biochemical, comet assay and anatomical parameters were employed. Royal jelly had no harmful effects when applied alone. On the other hand, following exposure to cypermethrin, there was a reduction in weight increase, root elongation, rooting percentage, mitotic index (MI), and chlorophyll a and b. Cypermethrin elevated the frequencies of micronucleus (MN) and chromosomal aberrations (CAs), levels of proline and malondialdehyde (MDA), and the activity rates of the enzymes catalase (CAT) and superoxide dismutase (SOD). A spectral change in the DNA spectrum indicated that the interaction of cypermethrin with DNA was one of the reasons for its genotoxicity, and molecular docking investigations suggested that tubulins, histones, and topoisomerases might also interact with this pesticide. Cypermethrin also triggered some critical meristematic cell damage in the root tissue. At the same time, DNA tail results obtained from the comet assay revealed that cypermethrin caused DNA fragmentation. When royal jelly was applied together with cypermethrin, all negatively affected parameters due to the toxicity of cypermethrin were substantially restored. However, even at the maximum studied dose of 500 mg/L of royal jelly, this restoration did not reach the levels of the control group. Thus, the toxicity of cypermethrin and the protective function of royal jelly against this toxicity in A. cepa, the model organism studied, were determined by using many different approaches. Royal jelly is a reliable, well-known and easily accessible protective functional food candidate against the harmful effects of hazardous substances such as pesticides.
Collapse
Affiliation(s)
| | - Tuğçe Kalefetoğlu Macar
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye.
| | - Oksal Macar
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye
| | - Emine Yalçın
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye
| | - Kültiğin Çavuşoğlu
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye
| | - Burak Özkan
- Giresun University, Faculty of Science and Art, Department of Biology, 28049 Giresun, Türkiye
| |
Collapse
|
5
|
Özkan B, Çavuşoğlu K, Yalçin E, Acar A. Investigation of multidirectional toxicity induced by high-dose molybdenum exposure with Allium test. Sci Rep 2024; 14:8651. [PMID: 38622233 PMCID: PMC11018863 DOI: 10.1038/s41598-024-59335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
In this study, the multifaceted toxicity induced by high doses of the essential trace element molybdenum in Allium cepa L. was investigated. Germination, root elongation, weight gain, mitotic index (MI), micronucleus (MN), chromosomal abnormalities (CAs), Comet assay, malondialdehyde (MDA), proline, superoxide dismutase (SOD), catalase (CAT) and anatomical parameters were used as biomarkers of toxicity. In addition, detailed correlation and PCA analyzes were performed for all parameters discussed. On the other hand, this study focused on the development of a two hidden layer deep neural network (DNN) using Matlab. Four experimental groups were designed: control group bulbs were germinated in tap water and application group bulbs were germinated with 1000, 2000 and 4000 mg/L doses of molybdenum for 72 h. After germination, root tips were collected and prepared for analysis. As a result, molybdenum exposure caused a dose-dependent decrease (p < 0.05) in the investigated physiological parameter values, and an increase (p < 0.05) in the cytogenetic (except MI) and biochemical parameter values. Molybdenum exposure induced different types of CAs and various anatomical damages in root meristem cells. Comet assay results showed that the severity of DNA damage increased depending on the increasing molybdenum dose. Detailed correlation and PCA analysis results determined significant positive and negative interactions between the investigated parameters and confirmed the relationships of these parameters with molybdenum doses. It has been found that the DNN model is in close agreement with the actual data showing the accuracy of the predictions. MAE, MAPE, RMSE and R2 were used to evaluate the effectiveness of the DNN model. Collective analysis of these metrics showed that the DNN model performed well. As a result, it has been determined once again that high doses of molybdenum cause multiple toxicity in A. cepa and the Allium test is a reliable universal test for determining this toxicity. Therefore, periodic measurement of molybdenum levels in agricultural soils should be the first priority in preventing molybdenum toxicity.
Collapse
Affiliation(s)
- Burak Özkan
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28200, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, 28200, Giresun, Turkey.
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| |
Collapse
|
6
|
Ristea ME, Zarnescu O. Effects of Indigo Carmine on Growth, Cell Division, and Morphology of Allium cepa L. Root Tip. TOXICS 2024; 12:194. [PMID: 38535927 PMCID: PMC10974144 DOI: 10.3390/toxics12030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 11/12/2024]
Abstract
Indigo carmine has a variety of uses in foods, textiles, medicine, pharmaceuticals, and cosmetics. There are studies reporting the toxic potential of indigo carmine on human health and the environment. In this study, we investigated the cytogenotoxic effects of indigo carmine using apical root cells of Allium cepa. Allium cepa bulbs were subjected to four treatments with indigo carmine (0.0032, 0.0064, 0.0125, and 0.2 mg/mL) and to ultrapure water as a control. After 5 days, root growth, root length, mitotic index, mitotic inhibition, chromosomal anomalies, and cell morphology were analyzed. According to our results, a decrease in root length and mitotic index was observed at all concentrations of indigo carmine. Additionally, several types of chromosomal abnormalities were observed, such as disturbed metaphase, sticky chain metaphase, anaphase bridge, and laggard chromosomes. Moreover, histological observation indicated that indigo carmine induces alterations in various components of root tip tissue, such as deformation and alteration of the cell wall, progressive condensation of chromatin, shrinkage of the nuclei, and an increase in the number of irregularly shaped nuclei and nuclear fragments. Our results indicate that the tested concentrations of indigo carmine may have toxic effects and raise concerns about its intensive use in many fields.
Collapse
Affiliation(s)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania;
| |
Collapse
|
7
|
Gasperl A, Müller M. Cytogenetic Bioindication in Root Meristems for Vitality Assessment of Trees. Methods Mol Biol 2024; 2787:95-103. [PMID: 38656484 DOI: 10.1007/978-1-0716-3778-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Our method describes how to collect forest tree root tips in the field, to store them for transfer to the lab, to pretreat root tips in order to arrest cells in metaphase, fix root tips to preserve specific morphological organizations, to stain fixed root tips by Feulgen's Reaction in order to increase contrast, and to prepare the root meristem for analyzing mitotic stages and chromosomal aberrations via light microscopy. We further describe how to classify chromosomal abnormalities and quantify them via aberration indices.
Collapse
Affiliation(s)
- Anna Gasperl
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Graz, Austria
| | - Maria Müller
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Graz, Austria.
| |
Collapse
|
8
|
Parveen N, Mondal P, Vanapalli KR, Das A, Goel S. Phytotoxicity of trihalomethanes and trichloroacetic acid on Vigna radiata and Allium cepa plant models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5100-5115. [PMID: 38110686 DOI: 10.1007/s11356-023-31419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Disinfection by-products (DBPs) are a concern due to their presence in chlorinated wastewater, sewage treatment plant discharge, and surface water, and their potential for environmental toxicity. Despite some attention to their ecotoxicity, little is known about the phytotoxicity of DBPs. This study aimed to evaluate the individual and combined phytotoxicity of four trihalomethanes (THMs: trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) and their mixture (THM4)), and trichloroacetic acid (TCAA) using genotoxic and cytotoxic assays. The analysis included seed germination tests using Vigna radiata and root growth tests, mitosis studies, oxidative stress response, chromosomal aberrations (CA), and DNA laddering using Allium cepa. The results showed a progressive increase in root growth inhibition for both plant species as the concentration of DBPs increased. High concentrations of mixtures of four THMs resulted in significant (p < 0.05) antagonistic interactions. The effective concentration (EC50) value for V. radiata was 5655, 3145, 2690, 1465, 3570, and 725 mg/L for TCM, BDCM, DBCM, TBM, THM4, and TCAA, respectively. For A. cepa, the EC50 for the same contaminants was 700, 400, 350, 250, 450, and 105 mg/L, respectively. DBP cytotoxicity was observed through CAs, including C-metaphase, unseparated anaphase, lagging chromosome, sticky metaphase, and bridging. Mitotic depression (MD) increased with dose, reaching up to 54.4% for TCAA (50-500 mg/L). The electrophoresis assay showed DNA fragmentation and shearing, suggesting genotoxicity for some DBPs. The order of phytotoxicity for the tested DBPs was TCAA > TBM > DBCM > BDCM > THM4 > TCM. These findings underscore the need for further research on the phytotoxicity of DBPs, especially given their common use in agricultural practices such as irrigation and the use of sludge as manure.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India
| | - Papiya Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Abhijit Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|