1
|
Liu X, Shi J, Wu M, Gao J, Zhang Y, Guo W, Zhang S. Betaine-homocysteine methyltransferase attenuates liver ischemia-reperfusion injury by targeting TAK1. FASEB J 2025; 39:e70349. [PMID: 39854060 DOI: 10.1096/fj.202402239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes. Utilizing BHMT knockout mice, we established an in vivo model of liver IR injury, and with BHMT knockout and overexpression AML12 cell lines, we created an in vitro hypoxia-reoxygenation model. Our findings reveal that BHMT deficiency exacerbates liver IR injury, leading to increased reactive oxygen species, apoptosis and inflammation, whereas BHMT overexpression mitigates these effects. We observed that BHMT inhibits the c-Jun N-terminal kinase (JNK)/p38 signaling pathway in liver IR injury by interacting with TAK1 and inhibiting its activity. The application of 5z-7-ox, a TAK1 inhibitor, reversed the worsening of liver IR injury and the activation of the JNK/p38 pathway associated with BHMT deficiency. These results demonstrate that BHMT protects against liver IR injury by targeting TAK1 and inhibiting the JNK/p38 signaling pathway. Our findings suggest that BHMT may be a promising therapeutic target for preventing liver IR injury.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, China
| | - Min Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, China
| | - Yi Zhang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, China
| |
Collapse
|
2
|
Yu Q, Mei C, Cui M, He Q, Liu X, Du X. Nepetoidin B Alleviates Liver Ischemia/Reperfusion Injury via Regulating MKP5 and JNK/P38 Pathway. Drug Des Devel Ther 2024; 18:2301-2315. [PMID: 38911032 PMCID: PMC11192200 DOI: 10.2147/dddt.s457130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/01/2024] [Indexed: 06/25/2024] Open
Abstract
Background Nepetoidin B (NB) has been reported to possess anti-inflammatory, antibacterial, and antioxidant properties. However, its effects on liver ischemia/reperfusion (I/R) injury remain unclear. Methods In this study, a mouse liver I/R injury model and a mouse AML12 cell hypoxia reoxygenation (H/R) injury model were used to investigate the potential role of NB. Serum transaminase levels, liver necrotic area, cell viability, oxidative stress, inflammatory response, and apoptosis were evaluated to assess the effects of NB on liver I/R and cell H/R injury. Quantitative polymerase chain reaction (qPCR) and Western blotting were used to measure mRNA and protein expression levels, respectively. Molecular docking was used to predict the binding capacity of NB and mitogen-activated protein kinase phosphatase 5 (MKP5). Results The results showed that NB significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, liver necrosis, oxidative stress, reactive oxygen species (ROS) content, inflammatory cytokine content and expression, inflammatory cell infiltration, and apoptosis after liver I/R and AML12 cells H/R injury. Additionally, NB inhibited the JUN protein amino-terminal kinase (JNK)/P38 pathway. Molecular docking results showed good binding between NB and MKP5 proteins, and Western blotting results showed that NB increased the protein expression of MKP5. MKP5 knockout (KO) significantly diminished the protective effects of NB against liver injury and its inhibitory effects on the JNK/P38 pathway. Conclusion NB exerts hepatoprotective effects against liver I/R injury by regulating the MKP5-mediated P38/JNK signaling pathway.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Chaopeng Mei
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Mengwei Cui
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Qianqian He
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xudong Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoxiao Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| |
Collapse
|
3
|
Yu Q, Li J, Cui M, Mei C, He Q, Du X. 6-Gingerol attenuates hepatic ischemia/reperfusion injury through regulating MKP5-mediated P38/JNK pathway. Sci Rep 2024; 14:7747. [PMID: 38565569 PMCID: PMC10987508 DOI: 10.1038/s41598-024-58392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
6-Gingerol, the main bioactive compound of ginger, has antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. However, it is unclear whether 6-Gingerol has protective effects against hepatic ischemia/reperfusion (I/R) injury. In this study, the mouse liver I/R injury model and the mouse AML12 cell hypoxia/reoxygenation (H/R) model were established by pretreatment with 6-Gingerol at different concentrations to explore the potential effects of 6-Gingerol. Serum transaminase levels, liver necrotic area, cell viability, inflammatory response, and cell apoptosis were used to assess the effect of 6-Gingerol on hepatic I/R or cell H/R injury. Quantitative polymerase chain reaction (qPCR) and Western blotting were used to detect the mRNA and protein expression. The results show that 6-Gingerol decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels, liver necrosis, inflammatory cytokines IL-1β, IL-6, MCP-1, TNF-α expression, Ly6g+ inflammatory cell infiltration, protein phosphorylation of NF-κB signaling pathway, Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) positive cells, cell apoptosis rate, the protein expression of pro-apoptotic protein BAX and C-Caspase3, increased cell viability, and expression of anti-apoptotic protein BCL-2. Moreover, 6-Gingerol could increase the mRNA and protein expression of mitogen activated protein kinase phosphatase 5 (MKP5) and inhibit the activation of P38/JNK signaling pathway. In MKP5 knockout (KO) mice, the protective effect of 6-gingerol and the inhibition of P38/JNK pathway were significantly weakened. Therefore, our results suggest that 6-Gingerol exerts anti-inflammatory and anti-apoptotic effects to attenuate hepatic I/R injury by regulating the MKP5-mediated P38/JNK signaling pathway.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiye Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengwei Cui
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chaopeng Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qianqian He
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoxiao Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
El-Aziz Fathy EA, Abdel-Gaber SAW, Gaber Ibrahim MF, Thabet K, Waz S. Downregulation of IL-1β/p38 mitogen activated protein kinase pathway by diacerein protects against kidney ischemia/reperfusion injury in rats. Cytokine 2024; 176:156511. [PMID: 38290257 DOI: 10.1016/j.cyto.2024.156511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Renal ischemia-reperfusion (I/R) can be precipitated by multiple clinical situations that lead to impaired renal function and associated mortality. The resulting tubular cell damage is the outcome of complex disorders including, an inflammatory process with an overproduction of cytokines. Here, diacerein (DIA), an inhibitor of proinflammatory cytokine interleukin-1 beta (IL-1β), was investigated against renal I/R in rats. DIA was orally administrated (50 mg/kg/day) for ten days before bilateral ischemia for 45 min with subsequent 2 hr. reperfusion. Interestingly, DIA alleviated the renal dysfunction and histopathological damage in the renal tissues. Pretreatment with DIA corrected the oxidative imbalance by prevented reduction in antioxidant levels of GSH and SOD, while it decreased the elevation of the oxidative marker, MDA. In addition, DIA downregulated IL-1β and TNF-α expression in the renal tissues. Consequent to inhibition of the oxidative stress and inflammatory cascades, DIA inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, downstream targets for p38 MAPK were also inhibited via DIA which prevented further increases of inflammatory cytokines and the apoptotic marker, caspase-3. Collectively, this study revealed the renoprotective role of DIA for renal I/R and highlighted the role of p38 MAPK encountered in its therapeutic application in renal disease.
Collapse
Affiliation(s)
- Eman Abd El-Aziz Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| | | | - Manar Fouli Gaber Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Khaled Thabet
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
5
|
Huo CL, Wang B, Zhang X, Sun ZG. Skimmianine attenuates liver ischemia/reperfusion injury by regulating PI3K-AKT signaling pathway-mediated inflammation, apoptosis and oxidative stress. Sci Rep 2023; 13:18232. [PMID: 37880319 PMCID: PMC10600244 DOI: 10.1038/s41598-023-45354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Liver ischemia/reperfusion (I/R) injury is a common injury after liver transplantation and hepatectomy. Skimmianine (Ski) has antibacterial, antiviral pharmacological effects. However, it is not clear whether Ski has a protective effect against liver I/R injury. In the present study, we established a mouse liver I/R model and an AML12 cell hypoxia-reoxygenation (H/R) model, both pretreated with different concentrations of Ski. Serum transaminase levels, necrotic liver area, cell viability, inflammatory factors, oxidative stress and apoptosis-related levels were measured to assess the protective effect of Ski against liver I/R injury. Western blotting was used to detect apoptosis-related proteins and PI3K-AKT pathway-related proteins. Mice and cells were also treated with PI3K inhibitor LY294002 to assess changes in indicators of liver injury. The results showed that Ski significantly reduced transaminase levels, liver necrosis area, oxidative stress, and apoptosis levels in mice with I/R. Ski also inhibited cell injury and apoptosis after H/R. Moreover, Ski activated phosphorylation of PI3K-AKT pathway-related proteins after liver I/R and cell H/R. Importantly, the PI3K inhibitor LY294002 effectively reversed the alleviation of I/R injury caused by Ski. These results confirm that Ski exerts a protective effect against liver I/R injury through activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Cheng-Long Huo
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Bing Wang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Xuewen Zhang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Zhen-Gang Sun
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China.
| |
Collapse
|