1
|
Tariq MF, Javed F, Rizzo L, Tahir MW, Ikhlaq A. Textile wastewater treatment by heterogeneous catalytic ozonation using microcellulose loaded ZIF 67 catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125031. [PMID: 40106978 DOI: 10.1016/j.jenvman.2025.125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The textile industry, being a significant consumer of fresh water, generates large amounts of wastewater, leading to serious environmental problems. The high levels of pollutants present in textile wastewater pose a significant risk to the environment and disrupt the ecosystem. As a result, it is essential to implement effective treatment steps to mitigate these harmful effects. This research focuses on the performance of a novel catalyst, namely microcrystalline cellulose zeolitic imidazolate frameworks (MCC@ZIF-67), in a heterogeneous catalytic ozonation process (HCOP) for the treatment of real textile effluent. The textile wastewater was characterized by a chemical oxygen demand (COD) of 490 mg/L, a 5 days biochemical oxygen demand (BOD5) of 206 mg/L, a total dissolved solids (TDS) concentration of 3500 mg/L, and intense red color. The study investigated the influence of several parameters like ozone dose, pH, catalyst dosage, and treatment time. The experimental results showed a 79.01 % decolourization, 72.40 % COD removal, and 66.51 % BOD5 removal after 30 min of treatment at optimum conditions of pH 9, ozone concentration 0.4 mg/min, and MCC@ZIF 67 dose of 50 mg/L. The comparison with control tests revealed the beneficial synergistic effects of HCOP with a process efficiency in the order of HCOP(O3/MCC@ZIF-67) > O3 > MCC@ZIF-67. Scavenging tests allowed to better support the explanation of possible degradation mechanisms. This study demonstrates the potential of MCC@ZIF-67 in the HCOP process for the effective treatment of textile effluent and, depending on the characteristics of textile wastewater and standards for effluent disposal, may serve either as standalone process, a pre-treatment for subsequent biological process or tertiary treatment.
Collapse
Affiliation(s)
- Muhammad Fahad Tariq
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Farhan Javed
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, 84084, Fisciano, (SA), Italy.
| | - Muhammad Wasim Tahir
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan.
| |
Collapse
|
2
|
Niu J, Yuan R, Chen H, Zhou B, Luo S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. ENVIRONMENTAL RESEARCH 2024; 262:119889. [PMID: 39216738 DOI: 10.1016/j.envres.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Antibiotics with pseudo-persistence in water have been regarded as emerging pollutants, which have obvious biological toxicity even at trace levels. On account of high reactivity, heterogeneous catalytic ozonation has been widely applied to remove antibiotics. Among the heterogeneous catalysts, with well-developed pores and regulable surface defects, carbon-based materials can act as both adsorbents and catalysts. Metal cations, surface hydroxyl (-OH) groups and oxygen vacancies (OVs) serve as primary active sites in metal oxides. However, composites (perovskite, apatite, etc.) with special crystalline structure have more crystallographic planes and abundant active sites. The unsaturated bonds and aromatic rings which have dense structure of the electron cloud are more likely to be attacked by ozone (O3) directly. Sulfonamides (SAs) can be oxidized by O3 directly within a short time due to the structure of activated aromatic rings and double bonds. With the existence of catalysts, almost all antibiotics can attain fair removal effects. The presence of water matrix can greatly influence the removal rate of pollutants via changing the surface properties of catalysts, competing active sites with O3, etc. Correspondingly, the application of diverse heterogeneous catalysts was introduced in details, based on modification including metal/non-metal doping, surface modification and carrier composite. The degradation pathways of SAs, fluoroquinolones (FQNs), tetracyclines (TCs) and β-lactams were summarized founded on the functional group structures. Furthermore, the effects of water matrix (pH, coexisting ions, organics) for catalytic ozonation were also debated. It is expected to proffer advanced guidance for researchers in catalytic ozonation of antibiotics.
Collapse
Affiliation(s)
- Jiameng Niu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Singh PP, Pandey G, Murti Y, Gairola J, Mahajan S, Kandhari H, Tivari S, Srivastava V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv 2024; 14:20492-20515. [PMID: 38946773 PMCID: PMC11208907 DOI: 10.1039/d4ra03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U.P.-211010 India
| | - Geetika Pandey
- Department of Physics, Faculty of Science, United University Prayagraj-211012 India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University Mathura-281406 India
| | - Jagriti Gairola
- School of Pharmacy, Graphic Era Hill University Clement Town Dehradun 248002 Uttarakhand India
- Department of Allied Sciences, Graphic Era (Deemed to be University) Clement Town Dehradun 248002 Uttarakhand India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Harsimrat Kandhari
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh-174103 India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| |
Collapse
|
4
|
Alhato AY, Kumar R, Barakat MA. Integrated Ozonation Ni-NiO/Carbon/g-C 3N 4 Nanocomposite-Mediated Catalytic Decomposition of Organic Contaminants in Wastewater under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:190. [PMID: 38251154 PMCID: PMC10818826 DOI: 10.3390/nano14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Developing a hybrid process for wastewater purification is of utmost importance to make conventional methods more efficient and faster. Herein, an effective visible light-active nickel-nickel oxide/carbon/graphitic carbon nitride (Ni-NiO/C/g-C3N4)-based nanocatalyst was developed. A hybrid process based on ozonation and Ni-NiO/C/g-C3N4 visible light photocatalysis was applied to decolourize the Congo red (CR), Alizarin Red S (ARS), and real dairy industry wastewater. The synthesized catalyst was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Χ-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectrophotometry (UV-Vis DRS). The factors affecting the catalytic process were evaluated, including contact time, solution pH, initial dye concentration, etc. The degradation rate of CR and ARS was compared between the photocatalysis, ozonation, and integrated photocatalytic ozonation (PC/O3) methods. The results showed 100% degradation of CR and ARS within 5 min and 40 min, respectively, by integrated PC/O3. The reusability of the modified catalyst was evaluated, and four successive regenerations were achieved. The modified Ni-NiO/C/g-C3N4 composite could be considered an effective, fast, and reusable catalyst in an integrated PC/O3 process for the complete decolourization of wastewater.
Collapse
Affiliation(s)
| | - Rajeev Kumar
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Y.A.); (M.A.B.)
| | | |
Collapse
|
5
|
Mehralipour J, Akbari H, Adibzadeh A, Akbari H. Tocilizumab degradation via photo-catalytic ozonation process from aqueous. Sci Rep 2023; 13:22402. [PMID: 38104166 PMCID: PMC10725442 DOI: 10.1038/s41598-023-49290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Following the advent of the coronavirus pandemic, tocilizumab has emerged as a potentially efficacious therapeutic intervention. The utilization of O3-Heterogeneous photocatalytic process (O3-HPCP) as a hybrid advanced oxidation technique has been employed for the degradation of pollutants. The present study employed a solvothermal technique for the synthesis of the BiOI-MOF composite. The utilization of FTIR, FESEM, EDAX, XRD, UV-vis, BET, TEM, and XPS analysis was employed to confirm the exceptional quality of the catalyst. the study employed an experimental design, subsequently followed by the analysis of collected data in order to forecast the most favorable conditions. The purpose of this study was to investigate the impact of several factors, including reaction time (30-60 min), catalyst dose (0.25-0.5 mg/L), pH levels (4-8), ozone concentration (20-40 mMol/L), and tocilizumab concentration (10-20 mg/L), on the performance of O3-HPCP. The best model was discovered by evaluating the F-value and P-value coefficients, which were found to be 0.0001 and 347.93, respectively. In the given experimental conditions, which include a catalyst dose of 0.46 mg/L, a reaction time of 59 min, a pH of 7.0, and an ozone concentration of 32 mMol/L, the removal efficiencies were found to be 92% for tocilizumab, 79.8% for COD, and 59% for TOC. The obtained R2 value of 0.98 suggests a strong correlation between the observed data and the predicted values, indicating that the reaction rate followed first-order kinetics. The coefficient of synergy for the degradation of tocilizumab was shown to be 1.22. The catalyst exhibited satisfactory outcomes, but with a marginal reduction in efficacy of approximately 3%. The sulfate ion (SO42-) exhibited no influence on process efficiency, whereas the nitrate ion (NO3-) exerted the most significant impact among the anions. The progress of the process was impeded by organic scavengers, with methanol exhibiting the most pronounced influence and sodium azide exerting the least significant impact. The efficacy of pure BiOI and NH2-MIL125 (Ti) was diminished when employed in their pure form state. The energy consumption per unit of degradation, denoted as EEO, was determined to be 161.8 KWh/m3-order.
Collapse
Affiliation(s)
- Jamal Mehralipour
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zoghi P, Mafigholami R. Optimisation of soil washing method for removal of petroleum hydrocarbons from contaminated soil around oil storage tanks using response surface methodology. Sci Rep 2023; 13:15457. [PMID: 37726362 PMCID: PMC10509228 DOI: 10.1038/s41598-023-42777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Total petroleum hydrocarbons (TPHs), which are often found in soil, water, sediments, and air. These compounds are a type of pollutant that can have a serious negative impact on living things and human health. Soil washing method is a remediation technique used to remove contaminants from the soil. This process involves the use of water or other solvents to extract contaminants from the soil, followed by separation and disposal of the contaminated solution. This research engineered the effectiveness of soil washing method to remove TPHs from a genuine, sullied soil sample. After analyzing the physical and chemical properties of the soil, the Box-Benken Design (BBD) technique was used to optimize the variables that influence the process's effectiveness. A quadratic model was suggested based on the BBD design, correlation coefficients, and other factors. The minimum, maximum and mean removal of TPHs during the stages of the study were 63.5, 94.5 and 76.7%, respectively. The correlation between the variables was strong, as shown by the analysis of variance (ANOVA), F-value (1064.5) and P-value (0.0001), and the proposed model was highly significant. The most effective soil washing method (SWM) was obtained with pH 7.8, liquid to solid ratio 50:1, reaction time 52 min, surfactant concentration 7.9 mg kg-1, and three washings. A removal rate of 98.8% was accomplished for TPHs from the soil in this context. The kinetic results indicate that the kinetic of TPHs removal follows the first-order kinetics (R2 = 0.96). There was not a major difference in the process's efficiency based on temperature. The removal efficiency heightened from 0 to 150 rpm and then remained steady. Introducing air flow increased the rate of removal, and the combination of ultrasonic waves with the reaction environment increased the process efficiency and decreased the time for the process and the amount of times it needed to be washed. An analysis of the washed soil both physically and chemically revealed a substantial decrease in the concentration of other elements.
Collapse
Affiliation(s)
- Pouyan Zoghi
- Department of Environment, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- Department of Environment, West Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|