1
|
Zhang X, Jia J, Chen G, Meng D, Ma J, Wang H, Zhou S, Ma L, Qian Q, Liu X, Li X, Xie L. Developmental and reproductive toxicity (DART) study of a novel SARS-CoV-2 tetravalent recombinant protein vaccine (SCTV01E) in rats. Reprod Toxicol 2025; 134:108878. [PMID: 40049248 DOI: 10.1016/j.reprotox.2025.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
SCTV01E, a novel SARS-CoV-2 tetravalent protein vaccine containing recombinant spike proteins of Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron BA.1 (B.1.1.529.1) variants and SCTVA02B adjuvant, has received Emergency Use Authorization (EUA) in China and the United Arab Emirates (UAE) as a next-generation COVID-19 vaccine. A comprehensive reproductive and developmental toxicity evaluation was conducted in Sprague-Dawley (SD) rats under Good Laboratory Practice (GLP) conditions. Maternal animals were intramuscularly injected with 1 × or 3 × the highest human dose every other week prior to mating, followed by booster immunizations during gestation and lactation periods. The main findings showed that SCTV01E vaccination elicited robust binding IgG and neutralizing antibody responses against all four target variants. While no vaccine-related adverse reproductive effects were observed in parental male or female rats, transient injection site reactions and slight, reversible reductions in body weight gain and food consumption were noted. Key developmental parameters were not affected, and postnatal evaluation revealed no evidence of embryo-fetal malformations, developmental delays, or functional impairments in offspring. These results suggest a favorable safety profile for SCTV01E and its possible suitability for clinical trials in humans of reproductive potential. Furthermore, the efficient transplacental and lactational transfer of maternal antibodies observed in animal models suggests a potential protection: direct immunization of mothers may confer passive immunity to both fetuses in utero and neonates during breastfeeding.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Jilei Jia
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Gaojian Chen
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Dan Meng
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Huimin Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Shaozheng Zhou
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Lin Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Qianqian Qian
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Xuejie Liu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China; Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Gaonkar R, Pritmani J, Datar M, Singh D, Balasinor N, Nishi K. Long-term effects of sub-chronic exposure to L-NAME on reproductive system of male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5303-5319. [PMID: 39545987 DOI: 10.1007/s00210-024-03609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Nω-nitro-l-arginine methyl ester (L-NAME) has been utilized as a nitric oxide synthase antagonist for many years in both basic and clinical research settings to assess its therapeutic potential. Though a number of studies have shown the effect of L-NAME on testicular function, the information regarding the reversibility of these effects upon L-NAME withdrawal is limited. In the present study, male rats (68-80 days old) divided randomly into three groups received different doses of L-NAME, i.e. 20 mg/kg bw (L20) and 10 mg/kg bw (L10) in drinking water, and drinking water only (control) through oral gavage daily for three weeks. The rats were monitored for and sacrificed after 60 days of L-NAME treatment termination. The animals had a significantly higher (p < 0.01) mean blood pressure compared to control. Aberrant histological changes were observed in the testes of L-NAME-treated rats. A significant reduction (p < 0.05) in the sperm count and an increase in abnormal sperm morphology (p < 0.05) was observed in L-NAME treated rats. Moreover, the spermatogenic cycle was found to be altered in L-NAME treated rats. No change was observed in serum estradiol levels, while serum testosterone levels were significantly increased (p < 0.05) in L10 and L20 animals. The intra-testicular testosterone was increased significantly (p < 0.01) in L20 animals. A significant decrease (p < 0.05) in superoxide dismutase activity was observed in L20 animals. The sub-chronic exposure to L-NAME resulted in higher mean arterial blood pressure and long-term testicular tissue damage, affecting sperm quality and spermatogenesis.
Collapse
Affiliation(s)
- Reshma Gaonkar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Janvi Pritmani
- Sunandan Divatia School of Science, NMIMS, Mumbai, Maharashtra, 400056, India
| | - Mamata Datar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
3
|
Giannakopoulos S, Pak J, Bakse J, Ward MA, Nerurkar VR, Tallquist MD, Verma S. SARS-CoV-2-induced cytokine storm drives prolonged testicular injury and functional impairment in mice that are mitigated by dexamethasone. PLoS Pathog 2025; 21:e1012804. [PMID: 39775442 PMCID: PMC11706467 DOI: 10.1371/journal.ppat.1012804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Compromised male reproductive health, including reduced testosterone and sperm count, is one of the long COVID symptoms in individuals recovering from mild-severe disease. COVID-19 patients display testicular injury in the acute stage and altered serum fertility markers in the recovery phase, however, long-term implications on the testis remain unknown. This study characterized the consequences of SARS-CoV-2 on testis function. The K18-hACE2 mice that survived SARS-CoV-2 infection were followed for one month after infection and the testicular injury and function markers were assessed at different stages of infection and recovery. The long-term impact of infection on key testes function-related hormones and male fertility was measured. The efficacy of inflammation-suppressing drug in preventing testicular injury was also evaluated. The morphological defects like sloughing of spermatids into the lumen and increased apoptotic cells sustained for 2-4 weeks after infection and correlated with testicular inflammation and immune cell infiltration. Transcriptomic analysis revealed dysregulation of inflammatory, cell death, and steroidogenic pathways. Furthermore, reduced testosterone levels associated with a transient reduction in sperm count and male fertility. Most testicular impairments resolved within one month of infection. Importantly, dexamethasone treatment attenuated testicular damage, inflammation, and immune infiltration. Our results implicate virus-induced cytokine storm as the major driver of testicular injury and functional impairments, timely prevention of which limits testis damage. These findings serve as a model for evaluating therapeutics in long COVID patients and may guide clinical strategies to improve male reproductive health outcomes post-SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stefanos Giannakopoulos
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jin Pak
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jackson Bakse
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Monika A. Ward
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michelle D. Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
4
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Silva AMD, Pereira AG, Bezerra LGP, Brasil AV, Pereira AF, de Oliveira MF, Rodrigues APR, Ñaupas LVS, Comizzoli P, Silva AR. Synergistic effects of glial cell line-derived neurotrophic factor and base-medium on in vitro culture of testicular tissue derived from prepubertal collared peccary. Cell Biol Int 2024; 48:1364-1377. [PMID: 39007507 DOI: 10.1002/cbin.12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
We evaluated the influence of different media plus various concentrations of Glial cell line-derived neurotrophic factor (GDNF) during the in vitro culture (IVC) of testicular tissues from prepubertal collared peccary. Testes from 5 individuals were collected, fragmented and cultured for 28 days (34°C and 5% CO2). Culture media were Dulbecco's modified essential medium (DMEM) or stem cell serum free media (StemPro-34™ SFM), both supplemented with various concentrations of GDNF (0, 10, or 20 ng/mL). Fragments were cultured on the flat surface of 0.75% agarose gel and were evaluated every 7 days for fragment area, histomorphology, cellular viability, and proliferative activity. Data were expressed as mean ± standard error and analyzed by Kruskal-Wallis's and Tukey test. Fragments area decreased over the 28 days-culture, regardless of the treatment. For morphology, the StemPro-37 SFM medium plus 10 ng/mL GDNF provided higher scores at all time points in comparison to DMEM using any GDNF concentration (p < .05). After 28 days, similar cellular viability (~70%) was observed in all treatments (p > .05). For proliferating cell nuclear antigen assay, only DMEM plus 10 ng/mL GDNF improved (p < .05) cellular proliferation on Days 14 and 28. Looking at argyrophilic nucleolar organizing regions, after 28 days, there were no differences among treatments regarding cell proliferative capacity for both spermatogonia and Sertoli cells (p > .05). In summary, the DMEM and StemPro-34 SFM are adequate medium for IVC of prepubertal peccary testicular tissue. Supplementation with GDNF, especially at a 10 ng/mL concentration, appears to be essential for the maintenance of cell survival and proliferation.
Collapse
Affiliation(s)
- Andreia Maria da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| | - Ana Glória Pereira
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| | | | - Andreza Vieira Brasil
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| | | | | | | | | | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| |
Collapse
|
6
|
Mastromonaco G. 40 'wild' years: the current reality and future potential of assisted reproductive technologies in wildlife species. Anim Reprod 2024; 21:e20240049. [PMID: 39286364 PMCID: PMC11404876 DOI: 10.1590/1984-3143-ar2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
Over the past 40 years, assisted reproductive technologies (ARTs) have grown significantly in scale and innovation, from the bovine embryo industry's shift from in vivo derived to in vitro produced embryos and the development of somatic cell-based approaches for embryo production. Domestic animal models have been instrumental in the development of ARTs for wildlife species in support of the One Plan Approach to species conservation that integrates in situ and ex situ population management strategies. While ARTs are not the sole solution to the biodiversity crisis, they can offer opportunities to maintain, and even improve, the genetic composition of the captive and wild gene pools over time. This review focuses on the application of sperm and embryo technologies (artificial insemination and multiple ovulation/in vitro produced embryo transfer, respectively) in wildlife species, highlighting impactful cases in which significant progress or innovation has transpired. One of the key messages following decades of efforts in this field is the importance of collaboration between researchers and practitioners from zoological, academic, governmental, and private sectors.
Collapse
|
7
|
Kwaspen L, Kanbar M, Wyns C. Mapping the Development of Human Spermatogenesis Using Transcriptomics-Based Data: A Scoping Review. Int J Mol Sci 2024; 25:6925. [PMID: 39000031 PMCID: PMC11241379 DOI: 10.3390/ijms25136925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
In vitro maturation (IVM) is a promising fertility restoration strategy for patients with nonobstructive azoospermia or for prepubertal boys to obtain fertilizing-competent spermatozoa. However, in vitro spermatogenesis is still not achieved with human immature testicular tissue. Knowledge of various human testicular transcriptional profiles from different developmental periods helps us to better understand the testis development. This scoping review aims to describe the testis development and maturation from the fetal period towards adulthood and to find information to optimize IVM. Research papers related to native and in vitro cultured human testicular cells and single-cell RNA-sequencing (scRNA-seq) were identified and critically reviewed. Special focus was given to gene ontology terms to facilitate the interpretation of the biological function of related genes. The different consecutive maturation states of both the germ and somatic cell lineages were described. ScRNA-seq regularly showed major modifications around 11 years of age to eventually reach the adult state. Different spermatogonial stem cell (SSC) substates were described and scRNA-seq analyses are in favor of a paradigm shift, as the Adark and Apale spermatogonia populations could not distinctly be identified among the different SSC states. Data on the somatic cell lineage are limited, especially for Sertoli cells due technical issues related to cell size. During cell culture, scRNA-seq data showed that undifferentiated SSCs were favored in the presence of an AKT-signaling pathway inhibitor. The involvement of the oxidative phosphorylation pathway depended on the maturational state of the cells. Commonly identified cell signaling pathways during the testis development and maturation highlight factors that can be essential during specific maturation stages in IVM.
Collapse
Affiliation(s)
- Lena Kwaspen
- Laboratoire d’Andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (L.K.); (M.K.)
| | - Marc Kanbar
- Laboratoire d’Andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (L.K.); (M.K.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Christine Wyns
- Laboratoire d’Andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (L.K.); (M.K.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
8
|
Hajian H, Motallebi M, Akhavan Taheri M, Kheiripour N, Aghadavod E, Shahaboddin ME. The preventive effect of heat-killed Lactobacillus plantarum on male reproductive toxicity induced by cholestasis in rats. Food Chem Toxicol 2024:114571. [PMID: 38452966 DOI: 10.1016/j.fct.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
This study investigated the preventive effect of heat-killed Lactobacillus plantarum (L. plantarum) on cholestasis-induced male reproductive toxicity in rats. Rats were divided into control normal, sham control, bile duct ligation (BDL) control, and BDL with heat-killed L. plantarum supplementation groups. The effects on sexual hormones, testicular and epididymal histology, sperm parameters, oxidative stress markers, and inflammatory gene expression were evaluated. Compared to the BDL control group, the BDL + heat-killed L. plantarum group showed higher levels of normal sperm, luteinizing hormone, testosterone, total antioxidant capacity, and catalase activity, indicating improved reproductive function. Conversely, markers of oxidative stress, such as total oxidative status, oxidative stress index, and carbonyl protein, were lower in the BDL + heat-killed L. plantarum group. The expression levels of inflammatory genes tumor necrosis factor-alpha and interleukin-6 were reduced, while interleukin-10 gene expression was increased in the BDL + heat-killed L. plantarum group. Histological evaluation confirmed the positive effects of heat-killed L. plantarum intervention on testicular parameters. In conclusion, heat-killed L. plantarum supplementation protects against cholestasis-induced male reproductive dysfunction in rats, as evidenced by improvements in hormonal balance, sperm quality, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Hajar Hajian
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akhavan Taheri
- Institute for Basic Sciences, Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Ogawa T, Matsumura T, Yao T, Kimura H, Hashimoto K, Ishikawa-Yamauchi Y, Sato T. Improvements in in vitro spermatogenesis: oxygen concentration, antioxidants, tissue-form design, and space control. J Reprod Dev 2024; 70:1-9. [PMID: 38143077 PMCID: PMC10902634 DOI: 10.1262/jrd.2023-093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Incorporation of bovine serum-derived albumin formulation (AlbuMAX) into a basic culture medium, MEMα, enables the completion of in vitro spermatogenesis through testicular tissue culture in mice. However, this medium was not effective in other animals. Therefore, we sought an alternative approach for in vitro spermatogenesis using a synthetic medium without AlbuMAX and aimed to identify its essential components. In addition to factors known to be important for spermatogenesis, such as retinoic acid and reproductive hormones, we found that antioxidants (vitamin E, vitamin C, and glutathione) and lysophospholipids are vital for in vitro spermatogenesis. Moreover, based on our experience with microfluidic devices (MFD), we developed an alternative approach, the PDMS-ceiling method (PC method), which involves simply covering the tissue with a flat chip made of PDMS, a silicone resin material used in MFD. The PC method, while straightforward, integrates the advantages of MFD, enabling improved and uniform oxygen and nutrient supply via tissue flattening. Furthermore, our studies underscored the significance of lowering the oxygen concentration to 10-15%. Using an integrated cultivation method based on these findings, we successfully achieved in vitro spermatogenesis in rats, which has been a long-standing challenge. Further improvements in culture conditions would pave the way for spermatogenesis completion in diverse animal species.
Collapse
Affiliation(s)
- Takehiko Ogawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takafumi Matsumura
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Japan
| | - Kiyoshi Hashimoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yu Ishikawa-Yamauchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takuya Sato
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|