1
|
Alvarado-Rojas C, Huberfeld G. Artificial intelligence applied to electroencephalography in epilepsy. Rev Neurol (Paris) 2025:S0035-3787(25)00482-5. [PMID: 40158909 DOI: 10.1016/j.neurol.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Artificial intelligence (AI) is progressively transforming all fields of medicine, promising substantial changes in clinical practice. In the context of epilepsy, electroencephalography (EEG), a technique used for over a century, has historically been resistant to automated analysis due to the complexity of the signals and the challenges posed by artifact management. While the human eye excels at recognizing patterns, algorithms have demonstrated superior capabilities in detecting and characterizing specific features, such as long-term dynamics and synchrony. Furthermore, the advent of wearable EEG devices has led to an exponential increase in data volume, surpassing the limits of visual interpretation. AI algorithms are now being developed to address these limitations, offering enhanced efficiency in both identifying subtle signal features and managing massive datasets. This review explores the fundamental principles of AI and its transformative potential in the field of EEG. It discusses the implications and the current limitations, including improvements limited to aggregation of already known knowledge, for epilepsy diagnosis, medical and surgical treatment, and innovative approaches to patient monitoring, including seizure forecasting, highlighting how AI is poised to redefine the management of epilepsy.
Collapse
Affiliation(s)
- C Alvarado-Rojas
- School of Engineering, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - G Huberfeld
- Department of Neurology, Hopital Fondation Adolphe de Rothschild, 75019 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm U1266, Neuronal Signaling in Epilepsy and Glioma, 75014 Paris, France.
| |
Collapse
|
2
|
Abdaltawab A, Chang LC, Mansour M, Koubeissi M. How accurate are machine learning models in predicting anti-seizure medication responses: A systematic review. Epilepsy Behav 2025; 163:110212. [PMID: 39673992 DOI: 10.1016/j.yebeh.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
IMPORTANCE Current epilepsy management protocols often depend on anti-seizure medication (ASM) trials and assessment of clinical response. This may delay the initiation of the ASM regimen that might optimally balance efficacy and tolerability for individual patients. Machine learning (ML) can offer a promising tool for efficiently predicting ASM response. OBJECTIVE The objective of this review is to synthesize the available information about the effectiveness and limitations of ML models in predicting and classifying the response of patients with epilepsy to ASMs, and to assess the impact of various data inputs on prediction performance. EVIDENCE REVIEW We conducted a comprehensive search of studies utilizing ML models for ASM response prediction using PubMed and Scopus up until November 2024. FINDINGS The review included 37 studies. Various data types, including clinical information, brain MRI, EEG, and genetic data, are useful in predicting responses to ASMs. Tree-based ML algorithms and Support Vector Machines are the most used models. Reported results vary widely, with certain models achieving near-perfect accuracy and others performing similar to random classifiers. The review also highlights the limitations of this research field, especially concerning the quality and quantity of data. CONCLUSIONS AND RELEVANCE The findings indicate that while ML models show great promise in predicting ASM responses in epilepsy, further research is required to refine these models for practical clinical application. The review underscores both the potential of ML in advancing precision medicine in epilepsy management and the need for continued research to improve prediction accuracy.
Collapse
Affiliation(s)
- Ahmed Abdaltawab
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Lin-Ching Chang
- Department of Data Analytics, The Catholic University of America, Washington, DC 20064, USA
| | - Mohammed Mansour
- Department of Neurology, UConn Health, Farmington, CT 06030, USA
| | - Mohamad Koubeissi
- Department of Neurology and Rehabilitation Medicine, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
3
|
Azuma H, Akechi T. EEG correlates of seizure without awareness and depression in patients with epilepsy: A secondary analysis of a 2022 study on EEG correlates of quality of life. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e70019. [PMID: 39386329 PMCID: PMC11462073 DOI: 10.1002/pcn5.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Hideki Azuma
- Department of Psychiatry and Cognitive‐Behavioral MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tatsuo Akechi
- Department of Psychiatry and Cognitive‐Behavioral MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
4
|
Heyne HO, Pajuste FD, Wanner J, Daniel Onwuchekwa JI, Mägi R, Palotie A, Kälviainen R, Daly MJ. Polygenic risk scores as a marker for epilepsy risk across lifetime and after unspecified seizure events. Nat Commun 2024; 15:6277. [PMID: 39054313 PMCID: PMC11272783 DOI: 10.1038/s41467-024-50295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 700k Finns and Estonians. We found that a high genetic generalized epilepsy PRS (PRSGGE) increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.73 per PRSGGE standard deviation [SD]) across lifetime and within 10 years after an unspecified seizure event. The effect of PRSGGE was significantly larger on idiopathic generalized epilepsies, in females and for earlier epilepsy onset. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). Here, we outline the potential of epilepsy specific PRSs to serve as biomarkers after a first seizure event.
Collapse
Affiliation(s)
- Henrike O Heyne
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany.
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, US.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Julian Wanner
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jennifer I Daniel Onwuchekwa
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Faculty of Life Sciences, University of Siegen, Siegen, Germany
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reetta Kälviainen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Mercier M, Pepi C, Carfi-Pavia G, De Benedictis A, Espagnet MCR, Pirani G, Vigevano F, Marras CE, Specchio N, De Palma L. The value of linear and non-linear quantitative EEG analysis in paediatric epilepsy surgery: a machine learning approach. Sci Rep 2024; 14:10887. [PMID: 38740844 PMCID: PMC11091060 DOI: 10.1038/s41598-024-60622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Epilepsy surgery is effective for patients with medication-resistant seizures, however 20-40% of them are not seizure free after surgery. Aim of this study is to evaluate the role of linear and non-linear EEG features to predict post-surgical outcome. We included 123 paediatric patients who underwent epilepsy surgery at Bambino Gesù Children Hospital (January 2009-April 2020). All patients had long term video-EEG monitoring. We analysed 1-min scalp interictal EEG (wakefulness and sleep) and extracted 13 linear and non-linear EEG features (power spectral density (PSD), Hjorth, approximate entropy, permutation entropy, Lyapunov and Hurst value). We used a logistic regression (LR) as feature selection process. To quantify the correlation between EEG features and surgical outcome we used an artificial neural network (ANN) model with 18 architectures. LR revealed a significant correlation between PSD of alpha band (sleep), Mobility index (sleep) and the Hurst value (sleep and awake) with outcome. The fifty-four ANN models gave a range of accuracy (46-65%) in predicting outcome. Within the fifty-four ANN models, we found a higher accuracy (64.8% ± 7.6%) in seizure outcome prediction, using features selected by LR. The combination of PSD of alpha band, mobility and the Hurst value positively correlate with good surgical outcome.
Collapse
Affiliation(s)
- Mattia Mercier
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
- Department of Physiology, Behavioural Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Chiara Pepi
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Giusy Carfi-Pavia
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | | | - Greta Pirani
- Department of Mechanical and Aerospace Engineering - DIMA, Sapienza University of Rome, Rome, Italy
| | - Federico Vigevano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Luca De Palma
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
6
|
Suresh R, Yadalam PK, Ramadoss R, Ramalingam K. Prediction of the Need for Anticonvulsants in the Management of Orofacial Neuropathic Pain Using Machine Learning. Cureus 2024; 16:e58934. [PMID: 38800307 PMCID: PMC11116743 DOI: 10.7759/cureus.58934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background and aim Orofacial neuropathic pain is a medical condition caused by a lesion or dysfunction of the nervous system and is one of the most challenging for dental clinicians to diagnose. Anticonvulsants, antidepressants, analgesics, nonsteroidal anti-inflammatory drugs, and other classes of medications are frequently used to treat this condition. Our study aimed to build a machine learning-based classifier to predict the need for anticonvulsant drugs in patients with orofacial neuropathic pain. Materials and methods A machine learning tool that was trained and tested on patients for predicting and detecting algorithms, which would in turn predict the need for anticonvulsants in the treatment of orofacial neuropathic pain, was employed in this study. Results Three machine learning algorithms successfully detected and predicted the need for anticonvulsants to treat patients with orofacial neuropathic pain. All three models showed a high accuracy, that is, 97%, 94%, and 89%, in predicting the need for anticonvulsants. Conclusion Machine learning algorithms can accurately predict the need for anticonvulsant drugs for treating orofacial neuropathic pain. Further research is needed to validate these findings using larger sample sizes and imaging modalities.
Collapse
Affiliation(s)
- Ramya Suresh
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | | | - Ramya Ramadoss
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Kerr WT, McFarlane KN. Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist. Curr Neurol Neurosci Rep 2023; 23:869-879. [PMID: 38060133 DOI: 10.1007/s11910-023-01318-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Machine Learning (ML) and Artificial Intelligence (AI) are data-driven techniques to translate raw data into applicable and interpretable insights that can assist in clinical decision making. Some of these tools have extremely promising initial results, earning both great excitement and creating hype. This non-technical article reviews recent developments in ML/AI in epilepsy to assist the current practicing epileptologist in understanding both the benefits and limitations of integrating ML/AI tools into their clinical practice. RECENT FINDINGS ML/AI tools have been developed to assist clinicians in almost every clinical decision including (1) predicting future epilepsy in people at risk, (2) detecting and monitoring for seizures, (3) differentiating epilepsy from mimics, (4) using data to improve neuroanatomic localization and lateralization, and (5) tracking and predicting response to medical and surgical treatments. We also discuss practical, ethical, and equity considerations in the development and application of ML/AI tools including chatbots based on Large Language Models (e.g., ChatGPT). ML/AI tools will change how clinical medicine is practiced, but, with rare exceptions, the transferability to other centers, effectiveness, and safety of these approaches have not yet been established rigorously. In the future, ML/AI will not replace epileptologists, but epileptologists with ML/AI will replace epileptologists without ML/AI.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Informatics, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Katherine N McFarlane
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA
| |
Collapse
|
8
|
Heyne HO, Pajuste FD, Wanner J, Onwuchekwa JID, Mägi R, Palotie A, Kälviainen R, Daly MJ. Polygenic risk scores as a marker for epilepsy risk across lifetime and after unspecified seizure events. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23297542. [PMID: 38076931 PMCID: PMC10705659 DOI: 10.1101/2023.11.27.23297542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 360k Finns spanning up to 50 years of individuals' lifetimes. Individuals with a high genetic generalized epilepsy PRS (PRSGGE) in FinnGen had an increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.55 per PRSGGE standard deviation [SD]) across their lifetime and after unspecified seizure events. Effect sizes of epilepsy PRSs were comparable to effect sizes in clinically curated data supporting our EHR-derived epilepsy diagnoses. Within 10 years after an unspecified seizure, the GGE rate was 37% when PRSGGE > 2 SD compared to 5.6% when PRSGGE < -2 SD. The effect of PRSGGE was even larger on GGE subtypes of idiopathic generalized epilepsy (IGE) (HR 2.1 per SD PRSGGE). We further report significantly larger effects of PRSGGE on epilepsy in females and in younger age groups. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). We found PRSGGE specifically associated with GGE in comparison with >2000 independent diseases while PRSNAFE was also associated with other diseases than NAFE such as back pain. Here, we show that epilepsy specific PRSs have good discriminative ability after a first seizure event i.e. in circumstances where the prior probability of epilepsy is high outlining a potential to serve as biomarkers for an epilepsy diagnosis.
Collapse
Affiliation(s)
- Henrike O Heyne
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, NY, US
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Julian Wanner
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Jennifer I Daniel Onwuchekwa
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Faculty of Life Sciences, University of Siegen, Germany
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reetta Kälviainen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mark J Daly
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|