1
|
Hu N, Zheng Y, Liu X, Jia J, Feng J, Zhang C, Liu L, Wang X. CircKat6b Mediates the Antidepressant Effect of Esketamine by Regulating Astrocyte Function. Mol Neurobiol 2025; 62:2587-2600. [PMID: 39138759 PMCID: PMC11772408 DOI: 10.1007/s12035-024-04420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The abundant expression of circular RNAs (circRNAs) in the central nervous system and their contribution to the pathogenesis of depression suggest that circRNAs are promising therapeutic targets for depression. This study explored the role and mechanism of circKat6b in esketamine's antidepressant effect. We found that intravenous administration of esketamine (5 mg/kg) treatment decreased the circKat6b expression in the astrocytes of hippocampus induced by a chronic unpredictable mild stress (CUMS) mouse model, while the overexpression of circKat6b in the hippocampus significantly attenuated the antidepressant effects of esketamine in depressed mice. RNA-sequencing, RT-PCR, and western blot experiments showed that the stat1 and p-stat1 expression were significantly upregulated in mouse astrocytes overexpressing circKat6b. In the CUMS mouse model, overexpression of circKat6b in the hippocampus significantly reversed the downregulation of p-stat1 protein expression caused by esketamine. Our findings demonstrated that a novel mechanism of the antidepressant like effect of esketamine may be achieved by reducing the expression of circKat6b in the astrocyte of the hippocampus of depressed mice.
Collapse
Affiliation(s)
- Na Hu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yujie Zheng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xueru Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Chunxiang Zhang
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
2
|
De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, Nuninga JO. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: A systematic review of animal models of depression. Neurosci Biobehav Rev 2024; 164:105796. [PMID: 38981574 DOI: 10.1016/j.neubiorev.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.
Collapse
Affiliation(s)
- Jesca E De Jager
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Rutger Boesjes
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Gijs H J Roelandt
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Ilektra Koliaki
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands; University Medical Centre Utrecht, Department of Psychiatry, the Netherlands
| |
Collapse
|
3
|
Jiang M, Wang L, Sheng H. Mitochondria in depression: The dysfunction of mitochondrial energy metabolism and quality control systems. CNS Neurosci Ther 2024; 30:e14576. [PMID: 38334212 PMCID: PMC10853899 DOI: 10.1111/cns.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Depression is the most disabling neuropsychiatric disorder, causing difficulties in daily life activities and social interactions. The exact mechanisms of depression remain largely unclear. However, some studies have shown that mitochondrial dysfunction would play a crucial role in the occurrence and development of depression. AIMS To summarize the known knowledge about the role of mitochondrial dysfunction in the pathogenesis of depression. METHODS We review the recent literature, including 105 articles, to summarize the mitochondrial energy metabolism and quality control systems in the occurrence and development of depression. Some antidepressants which may exert their effects by improving mitochondrial function are also discussed. RESULTS Impaired brain energy metabolism and (or) damaged mitochondrial quality control systems have been reported not only in depression patients but in animal models of depression. Although the classical antidepressants have not been specially designed to target mitochondria, the evidence suggests that many antidepressants may exert their effects by improving mitochondrial function. CONCLUSIONS This brief review focuses on the findings that implicate mitochondrial dysfunction and the quality control systems as important etiological factors in the context of depressive disorders. It will help us to understand the various concepts of mitochondrial dysfunction in the pathogenesis of depression, and to explore novel and more targeted therapeutic approaches for depression.
Collapse
Affiliation(s)
- Mengruo Jiang
- College of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Liyuan Wang
- Department of Physiology, College of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Hui Sheng
- Department of Physiology, College of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|