1
|
Yeni Y, Genc S, Nadaroglu H, Hacımuftuoglu A. Effects of quercetin-immobilized albumin cerium oxide nanoparticles on glutamate toxicity: in vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5147-5156. [PMID: 39527310 DOI: 10.1007/s00210-024-03610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One aspect of glutamate (Glut) toxicity may be the opening of the blood-brain barrier to albumin (Al), which in itself can cause nerve cell death. Quercetin (Q) is a polyphenolic substance and has a neuroprotective effect. Cerium oxide nanoparticles (Ce2O3NPs) are highly interested in biological applications due to their antioxidant properties. The current study aimed to investigate the impact of Q-immobilized Al+Ce2O3NPs in Glut-induced neurotoxicity, mainly focusing on cell viability and neurobiochemical changes. Hydrothermal synthesis and characterization of Q-immobilized Al+Ce2O3NPs were performed. After preparing the primary neuron culture, it was exposed to Glut to induce neurotoxicity. Then, various doses of Ce2O3NP, Al+Ce2O3NP, and Q+Al+Ce2O3NPs (1, 5, 10, and 25 µg/ml) were applied to the wells and incubated for 24 h. Then, cell viability was determined by MTT analysis. Additionally, oxidative stress parameters were measured. When the obtained data were examined, it was shown that cell viability decreased with Glut concentration but significantly increased with Q+Al+Ce2O3NPs treatment. When oxidative stress markers were considered, Glut treatment increased LDH, AChE, and TOS levels, while TAC and GSH levels decreased. However, the trend changed after Q+Al+Ce2O3NPs treatment, suggesting that damaged neurons were protected against oxidative stress. The results of this study indicate that Q+Al+Ce2O3NP can ameliorate Glut-induced neurotoxicity, especially when used at a dose of 25 µg/ml.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, Battalgazi, Malatya, 44210, Turkey.
| | - Sıdıka Genc
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, Erzurum, 25240, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Singh M, Panda SP. Investigating the Therapeutic Property of Galium verum L. (GV) for MSG induced Audiogenic Epilepsy (AEs) and Neuroprotection through In-Silico and In-Vitro Analysis. Cent Nerv Syst Agents Med Chem 2025; 25:181-209. [PMID: 39253919 DOI: 10.2174/0118715249330123240822063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Audiogenic Epilepsy (AEs) is a subtype of epileptic seizure that is generally caused by high-intensity sounds. A large number of traditional medicines has been explored in this lieu where our study chased Galium verum L. (Rubiaceae), an herbal plant which is commonly known as Lady's Bedstraw, that contains a highly rich chemical composition including flavonoids (Hispidulin, Quercetin, and Kaempferol), and phenolic acids (chlorogenic acid, caftaric acid, and gallic acid). G verum is well known for its antioxidant, neuroprotective, and anti-inflammatory properties. Recently, the unique role of Adhesion G Protein- Coupled Receptor V1 (ADGRV1) protein in the progression of audiogenic epilepsy has been explored. AIMS AND OBJECTIVES This study aimed to examine the potent phytoconstituents of the hydroalcoholic extract of G. verum L. (HEGV) using analytical techniques. Additionally, our study sought to evaluate the antioxidant, neuroprotective, anti-inflammatory properties, and antiepileptic potency of HEGV by targeting ADGRV1 via in silico and in vitro analyses using SHSY5Y cells. METHODS HPLC and LC-MS techniques were employed to identify the flavonoids, iridoids, and phenolic acid derivatives present in HEGV. DPPH (2,2-diphenyl-1-picrylhydrazyl), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays were performed to confirm the antioxidant potential of the extract. Additionally, in silico molecular docking and molecular dynamic studies were performed using AutoDock Vina software to analyze the possible interactions between crucial phytoconstituents of HEGV and ADGRV1, followed by cell line analysis. In the in vitro analysis, antioxidant, neuroprotective, and anti-inflammatory properties were assessed via cell viability assay, IL, GABA, and glutamate estimation. RESULTS LC-MS and HPLC analyses revealed high concentrations of hispidulin, a major flavonoid found in HEGV. HEGV exhibited moderate-to-high free radical-scavenging activities comparable to those of ascorbic acid. Docking analysis demonstrated that hispidulin has a stronger binding affinity with ADGRV1 (Vina score = -8.6 kcal/mol) than other compounds. Furthermore, cell line analysis revealed that the MSG exacerbates the neurodegeneration and neuroinflammation, whereas, HEGV and Hispidulin both possess neuroprotective, antioxidant, and antiepileptic activities. CONCLUSION HEGV and Hispidulin proved to be promising candidates for treating audiogenic epilepsy by modulating ADGRV1.
Collapse
Affiliation(s)
- Mansi Singh
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh-281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh-281406, India
| |
Collapse
|
3
|
Piras F, Sogos V, Pollastro F, Rosa A. Protective Effect of Arzanol against H 2O 2-Induced Oxidative Stress Damage in Differentiated and Undifferentiated SH-SY5Y Cells. Int J Mol Sci 2024; 25:7386. [PMID: 39000492 PMCID: PMC11242736 DOI: 10.3390/ijms25137386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Oxidative stress can damage neuronal cells, greatly contributing to neurodegenerative diseases (NDs). In this study, the protective activity of arzanol, a natural prenylated α-pyrone-phloroglucinol heterodimer, was evaluated against the H2O2-induced oxidative damage in trans-retinoic acid-differentiated (neuron-like) human SH-SY5Y cells, widely used as a neuronal cell model of neurological disorders. The pre-incubation (for 2 and 24 h) with arzanol (5, 10, and 25 μM) significantly preserved differentiated SH-SY5Y cells from cytotoxicity (MTT assay) and morphological changes induced by 0.25 and 0.5 mM H2O2. Arzanol reduced the generation of reactive oxygen species (ROS) induced by 2 h oxidation with H2O2 0.5 mM, established by 2',7'-dichlorodihydrofluorescein diacetate assay. The 2 h incubation of differentiated SH-SY5Y cells with H2O2 determined a significant increase in the number of apoptotic cells versus control cells, evaluated by propidium iodide fluorescence assay (red fluorescence) and NucView® 488 assay (green fluorescence). Arzanol pre-treatment (2 h) exerted a noteworthy significant protective effect against apoptosis. In addition, arzanol was tested, for comparison, in undifferentiated SH-SY5Y cells for cytotoxicity and its ability to protect against H2O2-induced oxidative stress. Furthermore, the PubChem database and freely accessible web tools SwissADME and pkCSM-pharmacokinetics were used to assess the physicochemical and pharmacokinetic properties of arzanol. Our results qualify arzanol as an antioxidant agent with potential neuroprotective effects against neuronal oxidative stress implicated in NDs.
Collapse
Affiliation(s)
- Franca Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
4
|
Kaizuka M, Kawaguchi S, Tatsuta T, Tachizaki M, Kobori Y, Tanaka Y, Seya K, Matsumiya T, Imaizumi T, Sakuraba H. Resiquimod Induces C-C Motif Chemokine Ligand 2 Via Nuclear Factor-Kappa B in SH-SY5Y Human Neuroblastoma Cells. Neuromolecular Med 2024; 26:16. [PMID: 38668900 DOI: 10.1007/s12017-024-08782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.
Collapse
Affiliation(s)
- Masatoshi Kaizuka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Tetsuya Tatsuta
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Mayuki Tachizaki
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuri Kobori
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yusuke Tanaka
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Science, 5 Zaifu-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
5
|
Meenambal R, Kruk T, Jakubowska K, Gurgul J, Szczepanowicz K, Szczęch M, Szyk-Warszyńska L, Warszyński P, Jantas D. Influence of Eu 3+ Doping on Physiochemical Properties and Neuroprotective Potential of Polyacrylic Acid Functionalized Cerium Oxide Nanoparticles. Int J Mol Sci 2024; 25:2501. [PMID: 38473749 DOI: 10.3390/ijms25052501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Cerium oxide nanoparticles (CeONPs) exhibiting antioxidant properties are investigated as potential tools for neurodegenerative diseases. Here, we synthesized polyacrylic acid conjugated cerium oxide (CeO) nanoparticles, and further to enhance their neuroprotective effect, Eu3+ was substituted at different concentrations (5, 10, 15 and 20 mol%) to the CeO, which can also impart fluorescence to the system. CeONPs and Eu-CeONPs in the size range of 15-30 nm were stable at room temperature. The X-ray Photoelectron Spectroscopy (XPS) analysis revealed the chemical state of Eu and Ce components, and we could conclude that all Eu3+ detected on the surface is well integrated into the cerium oxide lattice. The emission spectrum of Eu-CeO arising from the 7F0 → 5D1 MD and 7F0 → 5D2 transitions indicated the Eu3+ ion acting as a luminescence center. The fluorescence of Eu-CeONPs was visualized by depositing them at the surface of positively charged latex particles. The developed nanoparticles were safe for human neuronal-like cells. Compared with CeONPs, Eu-CeONPs at all concentrations exhibited enhanced neuroprotection against 6-OHDA, while the protection trend of Eu-CeO was similar to that of CeO against H2O2 in SH-SY5Y cells. Hence, the developed Eu-CeONPs could be further investigated as a potential theranostic probe.
Collapse
Affiliation(s)
- Rugmani Meenambal
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31-343 Krakow, Poland
| | - Tomasz Kruk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Klaudia Jakubowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31-343 Krakow, Poland
| | - Jacek Gurgul
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Danuta Jantas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31-343 Krakow, Poland
| |
Collapse
|