1
|
Echterhof A, Dharmaraj T, Khosravi A, McBride R, Miesel L, Chia JH, Blankenberg PM, Lin KY, Shen CC, Lee YL, Yeh YC, Liao WT, Blankenberg FG, Dąbrowska K, Amanatullah DF, Frymoyer AR, Bollyky PL. The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo. JCI Insight 2024; 9:e181309. [PMID: 39435664 PMCID: PMC11530120 DOI: 10.1172/jci.insight.181309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
With the increasing prevalence of antimicrobial-resistant bacterial infections, there is interest in using bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of i.v. administered bacteriophage in uninfected mice. A single dose of LPS-5, a bacteriophage recently used in human clinical trials to treat drug-resistant Pseudomonas aeruginosa, was administered i.v. to both immunocompetent BALB/c and neutropenic CD1 mice. Phage concentrations were assessed in peripheral blood and spleen at 0.25, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance was only minimally affected by neutropenia. Indeed, the half-lives of phages in blood in BALB/c and CD1 mice were 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that significant inactivation of circulating phages occurs over time. These data indicate that alternative factors, but not neutrophils, inactivate i.v. administered phages.
Collapse
Affiliation(s)
- Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arya Khosravi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Robert McBride
- Felix Biotechnology, South San Francisco, California, USA
| | - Lynn Miesel
- Pharmacology Discovery Services, Taipei, Taiwan
| | | | - Patrick M. Blankenberg
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Yu-Ling Lee
- Pharmacology Discovery Services, Taipei, Taiwan
| | | | | | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, California, USA
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Derek F. Amanatullah
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Adam R. Frymoyer
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Silva MD, Pinto G, França A, Azeredo J, Melo LDR. Phage SEP1 hijacks Staphylococcus epidermidis stationary cells' metabolism to replicate. mSystems 2024; 9:e0026324. [PMID: 38904376 PMCID: PMC11265418 DOI: 10.1128/msystems.00263-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
In nature, bacteria often survive in a stationary state with low metabolic activity. Phages use the metabolic machinery of the host cell to replicate, and, therefore, their efficacy against non-dividing cells is usually limited. Nevertheless, it was previously shown that the Staphylococcus epidermidis phage SEP1 has the remarkable capacity to actively replicate in stationary-phase cells, reducing their numbers. Here, we studied for the first time the transcriptomic profiles of both exponential and stationary cells infected with SEP1 phage using RNA-seq to gain a better understanding of this rare phenomenon. We showed that SEP1 successfully takes over the transcriptional apparatus of both exponential and stationary cells. Infection was, however, delayed in stationary cells, with genes within the gp142-gp154 module putatively implicated in host takeover. S. epidermidis responded to SEP1 infection by upregulating three genes involved in a DNA modification system, with this being observed already 5 min after infection in exponential cells and later in stationary cells. In stationary cells, a significant number of genes involved in translation and RNA metabolic and biosynthetic processes were upregulated after 15 and 30 min of SEP1 infection in comparison with the uninfected control, showing that SEP1 activates metabolic and biosynthetic pathways necessary to its successful replication.IMPORTANCEMost phage-host interaction studies are performed with exponentially growing cells. However, this cell state is not representative of what happens in natural environments. Additionally, most phages fail to replicate in stationary cells. The Staphylococcus epidermidis phage SEP1 is one of the few phages reported to date to be able to infect stationary cells. Here, we unveiled the interaction of SEP1 with its host in both exponential and stationary states of growth at the transcriptomic level. The findings of this study provide valuable insights for a better implementation of phage therapy since phages able to infect stationary cells could be more efficient in the treatment of recalcitrant infections.
Collapse
Affiliation(s)
- Maria Daniela Silva
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS–Associate Laboratory, Braga/Guimarães, Portugal
| | - Graça Pinto
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS–Associate Laboratory, Braga/Guimarães, Portugal
| | - Angela França
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS–Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Azeredo
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS–Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís D. R. Melo
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS–Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Fletcher J, Manley R, Fitch C, Bugert C, Moore K, Farbos A, Michelsen M, Alathari S, Senior N, Mills A, Whitehead N, Soothill J, Michell S, Temperton B. The Citizen Phage Library: Rapid Isolation of Phages for the Treatment of Antibiotic Resistant Infections in the UK. Microorganisms 2024; 12:253. [PMID: 38399657 PMCID: PMC10893117 DOI: 10.3390/microorganisms12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial resistance poses one of the greatest threats to global health and there is an urgent need for new therapeutic options. Phages are viruses that infect and kill bacteria and phage therapy could provide a valuable tool for the treatment of multidrug-resistant infections. In this study, water samples collected by citizen scientists as part of the Citizen Phage Library (CPL) project, and wastewater samples from the Environment Agency yielded phages with activity against clinical strains Klebsiella pneumoniae BPRG1484 and Enterobacter cloacae BPRG1482. A total of 169 and 163 phages were found for K. pneumoniae and E. cloacae, respectively, within four days of receiving the strains. A third strain (Escherichia coli BPRG1486) demonstrated cross-reactivity with 42 E. coli phages already held in the CPL collection. Seed lots were prepared for four K. pneumoniae phages and a cocktail combining these phages was found to reduce melanisation in a Galleria mellonella infection model. The resources and protocols utilised by the Citizen Phage Library enabled the rapid isolation and characterisation of phages targeted against multiple strains. In the future, within a clearly defined regulatory framework, phage therapy could be made available on a named-patient basis within the UK.
Collapse
Affiliation(s)
- Julie Fletcher
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Robyn Manley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christian Fitch
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christina Bugert
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Karen Moore
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Audrey Farbos
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Michelle Michelsen
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Shayma Alathari
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Nicola Senior
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Alice Mills
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - Natalie Whitehead
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - James Soothill
- Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Stephen Michell
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Ben Temperton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| |
Collapse
|
4
|
Ul Haq I, Khan M, Khan I. Phytopathological management through bacteriophages: enhancing food security amidst climate change. J Ind Microbiol Biotechnol 2024; 51:kuae031. [PMID: 39210514 PMCID: PMC11388930 DOI: 10.1093/jimb/kuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY The burden of plant diseases and phage-based phytopathological treatment.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral school, Silesian University of Technology , 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901 MG, Brazil
- Department of Bioscience, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| |
Collapse
|